
NASA/TM--1999-209182

An Automated Code Generator for

Three-Dimensional Acoustic Wave

Propagation With Geometrically

Complex Solid Wall Boundaries

Rodger William Dyson, Jr.
Glenn Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

June 1999

Acknowledgments

I wish to express my gratitude and deepest appreciation to Dr. John W. Goodrich for his guidance, counseling,
encouragement and for his friendship. He has allowed me to stand on the infrastructure that he has built.

In particular, he developed the MESA schemes used in this work and provided most of the numerical analysis

expertise required to complete it.

I would like to thank Chuck Putt for his wonderful insights and assistance. His love of books and science helped to

keep me focused. His interest in my career was crucial for my current position at NASA. He also originally

introduced me to Dr. John Goodrich and made possible our collaborative partnership.

Thanks goes to my father-in-law, George Durham, who originally suggested that I pursue the Ph.D.

since I was studying all those textbooks anyway.

I would also like to thank Gary Weegman, Joan Oravec, Dr. Bill Ford, Dennis Huff and the

NASA Glenn Research Center for supporting this research with both the funding and the time to complete it.

And I thank my committee members, Dr. Bob Mullen, Dr. Randy Beer, Dr. George Ernst, and my academic advisor,

Dr. Chris Papachristou for reviewing this dissertation and taking the time to serve on my committee.

This work, as does all work, stands on the shoulders of giants. I want to thank my Hiram College professors

Dr. Jim Case, Dr. Lawrence Becker, Dr. Oberta Slotterbeck, and Dr. Michael Grajek

for introducing me to some of those giants.

And finally, I am grateful for Dr. John Adamczyk's physics course at North Olmsted High School. I did not take

academics seriously until his no-nonsense approach to science channeled my stubborness into inquisitiveness and
introduced my mind to something worth thinking about.

Trade names or manufacturers' names are used in this report for
identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A16

Available from

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Price Code: A16

Contents

List of Figures vii

List of Tables x

Introduction to Computational A(:roacoustics 1

1.1 (;overning Equations 52

1.1.1 Navier-Stokes Equations ;2

1.1.2 Th¢' Eul,'r E(tualions 3

1.1.3 Lineariz('d Euh'r Equations 4

(!FD vs. ('AA 51.2

1.3

1.1

(_Oml)utat ional Approaches _;

Out[int- of th(" Thesis l0

MESA Propagation Algorithln DeveloI)ment 15

2.1 Spatial hJt_'rl)olation l(i

2.52 Teml)oral Evolution 521

MESA Propagation Algorithm Automatioll 28

3.1 Spatial lnlerpolation 29

3.1.1

3.1.52

3.1.3

3. l.,l

3.1.5

The Intorl)olatiott Probl('m it, 2D 29

Pyramid Rel)resentation of Basis (:oefii<'i_mts in 2I) 31

Polynolnia] i(b'als and Solving SA = Z in 21) 31

Tensor Form Mcqhod in 2D 3.(t

The']nl¢'rl)ola/iolJ lh'obl('m in 31) t6

NASA/TM--1999-209182 iii

3.1.6 %'nsor Form Method in 31) 47

3.:2 Temporal Evolution 53

3.2.1 Finite Difference Form Method in 2D 53

3.:2.:2 SpatiaI-Tenq)oral (_oetfici(-n! Form Method in 2[) 5:1

3.2.3 l(ecursiw • Tensor Form Method in :2D 61

3.2..1 (:osl Comparison of Methods in 2D 65

3.2.5 Finile Difference Form Method in 3D 67

3.2.6 Spatial-Temporal (?oetiicient Form Method in 3D 69

3.:2.7 Recursive Tensor Form i\|ethod in aD 7._)

a.2.s (:osl (!omparison of Methods iu 3D 79

3.3 (;elwrat, ing lhe FORTRAN Propagation (:ode 81

Wall Boundary Mapping in Two-Dimensions

1. l

4.2

4.3

4.,t

4.3

t.6

87

lnl roduction 87

Definitions and Approaches 89

Slencil (!onstraint Tree.9,1

.1.3.1 Building lhe Tree 98

Recursive Boxes 10")

Symmetries and Simplifications 106

Unique Mapphlgs t0.9

-1,(i.l Mapping the $8 (!ases 11:2

4.6.2 lklatq_ing the $7 Cases 114

-t.6.3 tlandling |he Degenerate Cases 11,1

Solving Near Boundary Grid Points 119

5.1 Lagrangiau Form VS. Mult, idilnensional Taylor Series Form 1:20

5.1.1

5.1.2

5.1,3

5.1.4

5.:2

Forming lhe lnlerpolant \Vith Multidimensiollal Taylor Series 120

Forming llw lnlerl)olanl with l,agrangian Polynomials 127)

Forming the lnlerpolanl with llermilian l)olynomials 129

Insuring, ('OllSisl,enl Linear Systems 133

Syslematic Slencil geh'clion 135

5.2.1 Maximize Inlerior hd'ormalion 135

NASA/TM--1999-209182 iv

5.3 IsolatedVS.Iml)licitVS.RecycledFill PointSolution............... 13(i

5.3.1 IsolatedMethod 140

5.3.2 ImplicitMethod 140

5.3.3 RecycledMethod................................ 141

5.4 Step-by-Stel)Demonstrationof MappingandSolvingtheFill Points 142

5.5 GeneratingtheFORTRANWallBoundaryInputFile 145

Extension to Parallel Computational Domain

6.1

6.2

6.3

6.4

6.5

147

Domain Dec()ml-)osition 147

Message Passing 150

Synchronous Communication 153

Asynchronous (k)mmunication 156

Generating the FORTRAN Parallel t)ropagatioll Code 157

Numerical Results 158

7.1 Two-l)imensiollal l)roblems 159

7.1.1 Bi-Periodic Open Domain up Io29 t/' order accuracy 159

7.1.2 Rotated Box at 2 ''_order accuracy 162

7.1.3 ('ircle a! '2"d order accuracy 165

7.1.4 Unrotated Box up to 11 _/_ order accuracy 16S

7.1.5 (_omplex (;eolllelry I)emonstration Mappings 169

7.2 Three-Dimensional I)roblems 171

7.2.1 Tri-Periodic Domain ut) to 27 th order accuracy 172

7.3 Parallel Scalabilily Studies 173

7.3.1 Bi-Periodic Open Domain up 1o '21 "t order accuracy 175

Conclusions and Future Research 178

8.1 Summary 178

.1.1 Scientific l)evelopmentsinlheThesis 17

8.1.2 Applications of the Scientific [)ewqolmlenl,s 179

8,2 (!onclusions 180

8.3 l"uture \York 1_1

NASA/TM-- 1999-209182 v

A Data from Nmnerical Experiments 182

A.I Unrotated Box Numerical Data 182

A.2 Parallel Scalability Study Data 1_7

B Mathematica Source Code For Acoustics Problelns With Wall Boundaries 196

B.I (_ode Generation System Overview 19(;

B.I.I lnlmt Parameters 197

B.I.2 Mat, hematica Modules 199

B.1.3 FORTRAN Subroutines 199

B.1.-I OutlmlS _2()1

B.7 Master File doall2d.geoln 202

B.3 Tensor Form of Spatial lntertmlation File - t.P2d.tfelp 207

B.4 Temporal Evolution Using Recursive Te,lsor Form Fih" ceXd.tfelp :21!)

[{.._ ('reale All The Admilfistratiw' l"iles su'2d.geonl :227

B.6 \Vail Boundary(!alculation File ma2d 250

Bibliography 335

NASA/TM-- 1999-209182 vi

List of Figures

3.1 Square region 9/of area ((X- 1) x h)'-' with known data points indicated with dots 3(I

3.2 Minimal cross-derivalive pyramid rel)resemation showing (liamond sub-structure

for:V =2and D=4 3:2

3.3 Pyramid rel_resellt, atioll showing line sub-structure for ,Y -- 7 and D = 4 33

3.4 Maximal Pyramid repres_mtat,io]l showing stencil evalualioll sequence and deriva-

tive assignments for case ,\" = '2 and D = ,1 35

3.5 Matrix ,_g with grid size h, N=2 and 1)=1, solw_d by lines 36

3.6 Matrix ,_',7wilh grid size h, N=2 and I)=1 solved by diamonds 36

3.7 Pseudocod(' for correct ordering of vector Z ?;8

3.8 Spalial inlerpolant origin musl be at center of slencil 4:3

3..(.) Stencil Local (;rid Point (:oordinate System (i,j)la

3.10 Loop to compute lhe S terlns in 2D with even stencil dilal_ensions 44

3.11 Loop to compute the S terms in 2I) with odd stencil dimensions 44

3.12 Inlermedial(_ Derivative Information ,ql,ot'age Locatiol> For c2d2 MESA 45

3.13 Loop to comput('lhe,q2 terms in 2D 46

3.14 Spatial(!oeliicient Mneumonic for 3Dwith N-- 2 and D= 1 47

3.15 Loop to ('onqmte the _q torlns ill 3D with even dimensioned stencils 49

3.1(5 I,oop to compute lhe S terms in 3I) with odd dimensioned stencils 49

3.17 Loop 1.o compute $2 terms in 3D for an even dimensioned stencil 51

3.1_ Loop l.o compute S:2 tern> in 3D['or an odd dimensioned stencil 51

3.19 LOOl) to ('otnpute ,q:{ terms in :{D 52

3.20 S,$2. aml S:_; ,qtorage l,ocal.ions For :ll) 2 × 2 x 2 sleucil 53

:'1.21 |']volvingall varial,les using theshifled (lata,_21) case 60

NASA/TM--1999-209182 vii

3.22 Loop to compule all spatial-temporal coefficients in 2D 63

3.23 Loop for advancing all variables with Horner's method ill 2D 64

:3.24 Evolving all the variables by shifting the data, 3D cast' 74

3.25 Loop to compute all the spatial-temporal coefficients ill 3D 77

3.26 Loop tbr advancing all variables with Horner's method ill 3D 79

4.1 One-Dimensional Wave Equation Boundary Treatlnents 90

4.2 Two-Dimensional Wave Equation Boundary _Yreatlnents 93

,1.3 Sample Mapping For Fill Points with 2 x 2 or :3 × 3 stencils: Box Related 4 ('ase 95

4.4 Staggered Grid with C2oD MESA scheme 96

4.5 Sl._mcil ('onstrainl 'Free Branch Numbering Scheme 9a;

:1.6 ,qtencil (.;rid Position Labels for N=2, N=3. aml N=5 9!1

:t.7 SWncil ('onslraint Tree, N=2, Assume Position 4 is an Interior (;rid Poim 9!1

l.S First Node Expansion of Stencil Constraint Tree 100

1.9 trnpruned Stencil (:onstrainl Tree 102

,I.10 Stencil (,rid Box Posilion Labels for N=3 104

t.ll Box Recursion Method: 8 Neighboring Box ('ases 10(i

4.12 Fhwursiwqy ('olle('ting 2 x 2 Sub-Stencil (!onfigurat.ions 107

4.13 No Wrap Assumption: g (lases 10.(1

4.14 5 × 5 stencil configurations under S_ and $7 assumplions 111

4.15 Too Many (_ollilwar Grid Points When Unaligned Boundary Points Need Mapped 111

4.16 Sub 3 × 3 stencil synuuet, ry und(;r S_ and $7 assuml)tions 112

4.17 S8 Symmetrical Mapping: 1S ('ases 11:3

-1.18 .";7 Symmetrical Mapping: 40 (:ases 115

4.19 Degenerate (!ase: NoS7 or $8 matching case 117

4.20 All Possible $7 Stencil (:onfigurations with Fill at (_enter : 16 (!ases 117

4.21 All Possil)h' $8 Slencil ('onfigm-ations wil,h Fill at ('enter : ,19 ('ases 117

,t.22 Degenerate (!ase: OneSS matching case llb

.t.23 Subslituting Non-I)egenerale (lases 2 and 3 to l_elnove I)egenerate (!as,- I 1 lS

5.1 Stable Saml,le Mapping: Box Hot.areal _ (!as _ 121

5.2 I:nstal)le Samph _ Mapping: Box llotaled _ (!ase 122

N ASAFFM-- 1999-209182 viii

7r t

5.3 Stable Sample Mal)ping: Box Rotated _ (,ase 123

5.4 Stable Sample Mapping: Box Unrotated Case 187

5.5 Sample Mapping Ordered by Minimal Interior Dependency: Box Rolated _ (!ase 137

5.6 Sample Mapping Ordered by Minimal Interior Dependency Small2×2Stencil:

Box 1Rot,aled _ (?ase 138

5.7 Sample Mapping Ordered by Maximal Interior Dependency Small 2 × 2 Stencil:

:r Case 139Box Rotated

5.8 5 × 5 stencil with till point in center 142

6.1 Solving hi-periodic open domain Linearized Euler Equalions wilh MESA 152

6.7 Nearesl Neighbor Communication 154

6.3 Synchrollous (!onmmnication, Implicit (_orner Exchange 155

7.1 Rotated Boxes and Circle Low F{esolution ('ases 16(I

7.2 Maximum Absolute Error at time=10, with convection Mx=My=l 162

7.3 Maximum Absolut,_ Error at time=l(I, with col|vectioJl Mx=My=l 163

7.1 Maximum ?_bsolute Error at time=10, with convection Mx=My=l 163

7.5 Unrol.ated box grid resohflion sludies, no convection, lime=10 169

7.6 Annular Duct Fill Point Mapping in 2D, iun=_ 170

7.7 Airfoil (!ascade Grid Point Labeling in 2I). iun=_ 170

7._ Airfoil (!ascade Fill Point Mapl)ing in 2D. iun--_ 171

7.9 Maximum Ahsolute Error at time=10, with convection Mx=My=l in 3I) 174

7.10 Scalability Performance to time=10, with convection Mx=My=l. iun=8 176

7.11 Scalability Performance to tilne=10, with conveclion Mx=My=l, iun=16 177

7.12 Scalability Perforlnance to time=10, with conveclion Mx=My=l, iun=32 177

B.I Overview of (:ode (;eneration System 198

NASA/TM--1999-209182 ix

List of Tables

3.1 Cost comparison (log1(_ nmlt.il_lies per grid point) of 2D lnethods 68

3.2 ('ost comparison (log10 mult, il_li_'s per grid point) of 3D methods _2

7.1 Maxmmln Absohm" Error of 2D Algorithms at time=10,100,1000, 1't - 9 th order 16,1

7.2 Maximum Absolute Error of 2D Algorithms at. time=10,100,1000, 11 _t_ - 19 th ord_'rl65

7.3 Maximum Absolute Error of 2D Algorithms at time=10,100,1000, 21 "t - 29 °' ord_q'166

7. t Maximum Error in p at t=10, c3o0 scheme applied to box rotat('d I)y o 166

7.5 Energy Ratio (shouhl 15e 1) at t=10, c3o0 schelne applied to box rotated by a . . 167

7.6 Maximum Error in t) a((=10.100,1000. c:lo0 sch<'m_' alSlSli('d to circle 168

7.7 Energy Ralio(shouhl Iw l)at l=lO,lO0,1000, c3oOschem¢ _appliedlocircle . . . 168

7.8 Maximun, Absolute Error of 3D Algorithms at. time=10, 100, 1"t - ,9th ord,,r . . . 174

7.9 Maximum Absohm _ Error of 3D Algorithms at time=10. 100. 11 th - 19 th ord_q" 174

7.10 MaximmnAbsohm _Error of 31) Algorithms at Ihne--10, 100,21 "t-27 th order 175

A.I Maximum Error in pal i=1, 10. 100, 1000. c2ol scheme, al)l,li_d t.o unrotal.ed box lg:I

A.2 Maximum Error in p at 1=1, 10. 100, 1000. c2o2 scheme applied to uni'otated box 18,1

A.3 Maximum t'rror ill p at t=l, 10, 100. 100O, c2o3 sch_mw applied to mlrolatod box 1_5

A.4 Maximum Error ill paI t=l. 10. 100, 1000, c2o4 sch_'m_ ' al)plied to qnrolaled box 185

A.5 Maximum Error ill p at 1=1.]0, 100, 1000. ('205 sch,gnlP applied to iiilrt)l,alod box 186

A.6 Scalabilily of Even St_mcil_'d 2D Algorithms. c2ol - c2o5, iun=8 188

A.7 ,%'alabilily of Even Slencil_'(I 21) Algorilhms. c2o7 - (:2o9, iun--S 189

:\.N Scalability of Ev_'n St_'n('il_'d 2I) :klgorillmls. <'1o0- c4o4, iuI|=8 190

..\.9 Scalability of Odd SWlwiled 2I) Algorilhms, c3o0- cl5o0, iun=8 191

A.10 Scalability of [':'_('ll ,"41(_m'ih'd 2I) Algorithms, c2ol - ('2o5, iml=16 1,92

NASA/TM-- 1999-2/)9182 x

A.11 Scalability of Even Stenciled 2I) Algorithms, c2o7 - c2o9, iun=16 193

A.12 Scalabilit.y of Odd Stenciled 21) i_lgorithms, c3o0 - c15o0, iun=16 194

A.13 Scalability of Even Stenciled 2D Algorithms, c-_o0 - c4o4, iun= 16 195

A.14 Scalability of Even Stenciled 2D Algorithms, c2ol - c2o3, iun=3:2 195

NASA/TM--1999-209182 xi

Chapter 1

Introduction to Computational

Aeroacoustics

(!omputational Aeroacoustics (CAA) is a relatively new and rapidly growing fieht of research thai

combines the traditional disciplines of Aeroacoustics and ('Omlm! ational l"lu id Dynamics (("F I)).

It may be defined as the direct calculation of all aspects of sound generalion and propagation

frolll the underlying differential or integral equations describing fluid motion [48]. ('AA can be

applied t,o fields such as aeronaulics, medicine, aut.olnotive engineering and architect ural design.

The reduction of aircraft noise is one significant aeronautical application for ('AA [98]. The

[Tnil.ed States has established a nationa.l goal of reducing noise lew'ls from the levels of loday's

subsolfiC aircraft by a factor of two within 10 ",ears, and by a factor of four within :20 years.

These noise reduction goals are important because air travel demand is expecled to triple over

the next _20 years, and because loud aircraft will not be permitled to land al many airports [3].

(!AA is best used by an engineer or a scientist as a to()l for analysis thai complilnents

theoretical and experimental techniques. A major capability offered by ('AA is the simulation

of linear prob[enls. A solution linearized a.boul, a known base flow of l,he unsteady Euler equations

with suitable wall and artificial boundary treatments can provide useful predictions of the noise

l)ropagaled from aircraf! prolmlsion systems. Perhaps the greatest potenlial for ('AA is the

solution of the non-linear l)roblem of sound generation. The direct ('Omlmta!ion of aerodynamic

sound generation permits a very detailed look at. any flow quanlity, and the mechanisms of

NASAFFM--1999-209182 1

soundgenerationcallbeexploredat afundamentallevel[70].Thisdissertationisrestrictedto

providingtoolstha!canbeappliedto linearproblems.Muchofthisworkonlnethodsforlinear

prol)lenlswill bedirectlyusableorextendibleto thenonlinearcase,whichwillbeconsideredin

later work.

1.1 Governing Equations

The linoarized Euler equations in three space dimensions have been utilized extensively in lifts

work. Their development begins with the fundamental physical laws of conservation of mass.

111o111e11[11111.alld energy. With the addition of tlwrmodynanfic relations, these flmdamenla] laws

are used 1o derive the Navier-Slokes equations, which give a complete description of viscous [tow

i)henomena [.()]. The Navier-Stokes equations are a nonlinear parabolic system, and do no! haw _

a gem'ral solution [5]. Restrictive assuml)tions can he added to these viscous flow equations.

and a variety of other systems can be derived from lhem. Brief presentations will I)e made of

111e Navier-Stokes equations, and of the Euler and linearized Euler equations [62].

1.1.1 Navier-Stokes Equations

The e(luations for flows in a compressible medium govern the sound generalion and l)rol)agatioll

in a fluid flow. The Navier-Stokes equations in air are giw-n by Batchelor [9] as:

('o,._ rration of Mas.s

Op Opui
-- + -Ih, (1.l)
Ot i)xi

('ons¢ r't_allon of Momcnlum

Opa i O[,tG Oj + Pij
-- + -- /;:. (1.2)

Ot O.r i

L'qualion oJ'5'lal(

t' = P(P. ?;) = pRT, (1.3)

l-', ¢ ly q Eqtt a I io n

TD's' DT dT l)l, 1 0 h OT
Tff =Cr Dl p DI -o+/-;_('_), (1.4)

N ASA/TM-- 1999-209182

with

0ui 0uj 2 i) u._.

i,_ =,s_,l,+,[-G: _ a._ +¢:,_I_)],

These equations are used to obtain the pressure p, tile density p. the velocity components

ui, the temperature 7', and the ent.rol)y ,% Particular flow conditions are specified by the

viscosity coefficient It, the specific heat at constant pressure cv, the thermal expansion coefficient

3 = -2t _-_Z-_ the dissil)ation fimction proportional to the viscosiW coefficient 0, the thermal
p x ,_T /p,

conductivity of lhe fluid k, the gas constanl /_. the rate of mass introduction per unit volume

Ih, and the body force components per unit volume Fi. In the case of isentropic flow (ie. with

constant entropy). _ is constant. In this case, acoustic waves are propagaled at. the speed of

SOtlnd C, where

where _ = 1.4 in air al 80 ° F.

•, Op _ 2I* _ _ R7'.
-(p,v) = I)_),, t,

1.1.2 The Euler Equations

The Euler equations are developed directly from the Navier-Stokes equations under the assump-

tions that the flow is invisci(t with tt = 0. and lhal the heat transfer terms are negligible. Euh'r's

Equations of fluid lnotion for an inviscid fluid are:

Continuilq Equalio,

[,t + V "(pu) : 0, (1.5)

('ons¢rvalio, of Momentum

Equation of ?,'tat_

1
,, + (u .V)i, + (-) Vp = 0. (1.6)

p

p = f(p), (1.7)

where ii = (if1, t12, US) is the velocity vector. The general form of the Equation of State is

for isentrol)ic flow. The conlinuity equation is the form of conservation of mass for lhe Euler

equations. Euler's equalions are a nonlinear hyperl_olic system.

NASA/TM-- 1999-209182

1.1.3 Linearized Euler Equations

Tile linearized Euler equations are derived from the Euler equations by linearizing with a per-

turbation around a steady solution. The linearized Euler equat, ions for the isemropic case in

three space dilnensions can be written as:

Ou l" Ou I' Ou . Ou Op
0-7+ 'O_+ 7_9 +ll t_z +_=0, (1.8)

ih' l,, Of 1.0c ii.0c Op
o-7+ _+ _+ _+_=0, (1.._:_)

Ou, t, Ou, 1, 0," 0,," Op
N+ _+ 0.+1t77+_ =0, (1.10)

Op t' Op I Op _ Ou #v Owo-7+ _+ _+I_" +0,Er+_+eW=0, (1.11/

where p and (u. c. u') are tlw disturbance pressure and velocily, and where (U, I. |I) is the con-

s! ant mean conw,ct.ion velocity. This form of the linearizod Euler equat ions is non-dimensionalizod

in terms of the Math number or speed of sound. The linearized Euh_r equations with a constant

mean flow are useful for modeling the propagation of an acoustic signal, bul require lhal signal

to I>e specified. The determination of the sound sources from the tmderlying fluid dynamics will

require the use of the Navier-Stokes or nonlinear Euler equations.

The linearized Euler equal.ions in two space dimensions does not have any : derivatives or

velocil.y componenls, and can be written as:

(1.1_)l) (://!/0 0 0

,, + 0 t' 0 0x + _ 1

/' 1 0 [_ \ p 1 I" t'/

It is not possible to simultaneously diagonalizo both of the coeflicienl matrices in equation 1.12.

and reduce the syslelll t,O separate decouph'd sysl,olns. The]inearized i';uler equations in two or

tilree space dimensions are inherently multidimensional, with waw' propagat ion along character-

istic surfaces. This l)roperty of tile multidimensional sys|elllS is significantly difl'orenl from the

lim,arized system in one space dimension, where lhe linearized Euler equal.ions may be decoul)led

and solved I>v the Method of Characteristics. The MESA technique, for algoril hni developnieni

(soc (']iaplor 2) generalizes lhe Illeihod of characteristics by using exact local]lroliagalors, and

NASA/TM-- 1999-209182

correctlyincorporatesinultidinlensionalwaveprolmgationalongcharacterislicsurfaces.

1.2 CFD vs. CAA

In many aeroacoustic problems, the energy levels of the unsteady flow fluctuations and of tile

sound perturbation can differ by from :2 to 5 orders of magnitude. This requires CAA algorithms

to have very high accuracy for resolving the sound and the fluid flow. The range of the human

ear is 20 Hz - 20 KHz, with peak sensitivity near 2Kllz. This requires CAA algorithnls to be able

to accurately propagale a wide band of frequencies. (!FD has typically been interested in steady-

state sohltions, and has developed met hods with high spatial accuracy. But, acoustic waves }lave

both a wavelength in space and a frequency in time, and this requires CA.A algorithms I,o haw _

high accuracy in both space and t,ime. (TD grids are often solution-adaptive to provide the

correct resolution in regions of varying gradients, but grid stretching or irregularity can distort

an acoustic wave if st, amlard (?FI) algorithms are used. This requires CAA algorithms t,o have

mmsually good accuracy when dealing with the geometry of complex objects or the delails of

complicated flows. All of these considerations imply that CAA requires numerical algorilhms

with significantly greater capabililies lhan standard (:FI) methods.

Dissipation and dispersion are lwo properlies of finite difference discretizations thal are

commonly used Io describe aml compare finite difference rnothods. In order to illust, rale these

properties, consider approximatiug a tilne derivative wflh a first-order forward difference, or

forward Euler differencing:

AF F(t + At)- F(t) dF
_ _ l). (1.13)At At -g7 (

For the normal or Fourier mode t"(l) = ¢i_,* with frequency w, lhe tirsl order forward Euler

discretization is

NASA/TM-- 1999-209182

Butsin(_t) _' -'_',- 2i so that for the hernial nlode F

dt _
= =_,

(1.15)

The Euler discretization reduces the amplitude of the derivative bv the dissipation factor sin

and shifts its phase by the dispersive term (ie where 0 ,,,at Higher frequency waves will be

distorted more than lower frequency waves [48]. The error introduced by a discretization will

depend upon the differencing that is used. but CFD methods generally have significan! dispersion

and dissipation errors. Many CFD methods actually rely upon introducing significant error in

the form of artificial damping, sometimes introduced to overcome dispersiw' errors, or to force

convergence of a solution. Typical acoustic applications demand highly accurate simulations,

with very small dissipation and dispersion errors relalive 1o the levels that l,ave been acceptalAe

in standard (fl) praclice.

Most (TFD algorithms are developed in an essentially piecemeal way by choosing various finite

difference discretizations for the separate derivative terl|ls ill equations thai are to be simulated.

The separate discretizations are chosen to work together to form a complete algorithm, but the

basic process tends t,o begin with a consideration of the separate derivat,ive t,erms. The essenl, ia[

issue, however, is no! to approximate a particular derivative, but t,o approximate the solution

of a system of equal, ions. The wave dynamics of a syst, enl are defined by the governing partial

differential equations, and it is useful to compare the solution of the original com, inuum l_roblem

with the computed results obtained fl'om a full discretization in both time and space. Solut, ions

are composed ofsuperposed waves of different frequellcies, and the separate waves can trawq

with differellt speeds. The wave Sl)eed depelldellcy Ill}Oil the wave fl'equellcy is described by the

dispersion relation of the governing equal,ion. (:onsider lhe one dimensional scalar linear wave

equation

()It (}ll

t)_ + c_ = o. (1.16)

where c is constant. The general form of the solution for this equation is

u(.v.t) = ,,,(.r- el), (1.17)

wher,' o.(x) = .(a'. 0) is the initial data at I = 0. A I.'ourier mode solution of a partial ditferential

NASAFFM--1999-209182

equationhastilegeneralform

u(a!, t) = ¢_cil_'t+_'rl, (1.18)

where w is the frequency of the solution, and d is the wave number, which is related to the wave

length A by iYA = 2,'1". Ill the case of tile linear wave equation, the general form of the solution

requires that the frequency and wave munber of a Fourier mode salisfy the dispersion relation

= -<3. (1.19)

so that a Fourier mode for t,he lim>ar wave equation has the form

u(a'.t) = ¢l,i_I I I. (1.20)

wit.h wave number i] and frequency ,_ = -c/_'. There are dispersion relationshil)s for solutions

of both cont.inuunl and discrel,e syslelns, and tllese relalionships can be compared. Significant

elTorl, has beell expended t,o reduce discrel.izat ion errors by increasing the agreemenl])et.weell l]ie

dispersion relat.ionships of the continuunl system and lhe discrele approxinlation by" dew'loping

Conq_act, Differencing methods in (TD [69], and tile Dispersion Relationship Preserving methods

in ('AA [105]. In general, ('FI) methods haw" difficulty providing accurate phase speeds for

modal frequencies greater than _.

The wave equal.ion in a quiescenl, niedium is isol.ropic, and propagates waves at, the sam"

speed in all directions. A central difference scheme t,hal, is employed oil a reel.angular grid will

,x.,- in the v-direct.ion at. speed a__ andpropagate wave information ill the x-direct, ion at speed -G-T" - at"

ill the diagonal direction at speed

,f(_X_.)" + (-XuF (1.21)
2_.Xl

This wave speed distortion is further niagnified when computing simulations ill three dimen-

sions. Standard CFD techniques introduce t.his t,ype of isol, ropy error which depends HpOli |lie

orient at ion of the prolmgating wave fronl.s relative l,o l.he discretizai,ion grid. In particular, ('FD

melliods thai depend upon dimensional splitting can introduce significanl dissipation in or&'r

to glue together a nillliidinlensional sohiiion froni soparato inierniediate one diniensiona] sohl-

lions [7,1]. The accuracy required for (!AA siinulalions, and tile iniiorenliy nnlllidiniensional

NASA/TM--1999-209182

natureofwavepropagationrequireCAAalgorithmsthat havelowlevelsof isotropyerror.

ThestandardCFDal)l)roachto handlingcurvedwallsurfacesis to map the physical domain

into a rectangular computational domain with the curved surfa('e mapl_ed into a plane boundary,

or lo use unstructured grids [106]. These are not the best methods for aeroacoustic problems,

since they introduce inhomogeneities into the governing equations which could cause unintended

acousl ic refraction and scattering. Methods for handling objects with complex structures or flows

with complicated local features continues t,o be an important area of (fl) research, and is even

more significant for CAA.

1.3 Computational Approaches

The numerical simulation of waw, propagation has a history, and various computational moth-

ods haw" been dew, loped. Each approach has a unique sel of properties, and ii is difl]cull to

defeml the idea that one method is best for all applications. A practical criterion for comparing

algorithms and their code ilnplement, ations is the anlounl of eft'err, that they require t,o produce

a desired resull. It, has been shown t,hal within a given class of lmmerical methods, higher order

methods tend to])e more et{icienl [62]. Methods which are used in (!AA for linear prol_lems

inchlde:

MaeCormack Methods These algorithms are standard ('FD methods, with dimensional split-

ling, and significant dissipation for stability. The original algorithm is second order in time

am[space [75]. An early variant is second order in time and fourth order in space [41]

l{ecenl work inchldes the developnlent of higher order variants, including algorilhms which

are fourth orde," in both time and space [118] and algorithms which are fourth order in

lime and sixth order in space' [53]. Mac('ormack methods are readily availal)le, and have

been used for ('AA simulations.

Compact Difference (:ompact Difference methods have been widely used in ('FD but are

more recenl than other stamlard (TD methods, such as the MacCormack methods. (!ore-

pact Differencing me! hods use global spline al_l_roximalions to obtain local derivative data,

with seine of the l>Ossil+l< , order of accuracy of the spatial itJt,erpolatiotl sacrificed t,o obtain

I)(,lt(,r phase accuracy [69]. ('Olllpacl I)ifl'er(mcillg llle[hods are detine[[Ity an approach

NASA/TM-- 1999-209182

to spatialinterpolation,andtendto usea Runge-Kuttatypeof timesteppingmelhod,

generallywith fourthorderaccuracyin time. Thesemethodscanaccuratelypropagate

relatiwqyhighfrequencywaves,comparedt,ostandardfinitedifferencenwt,hods,andhave

beenusedsuccessflfllyinCAAsimulations[19].

DRP DispersionRelat,ionPreservingmethodsarebasedonthefac!that thewavepropagation

propertiesof a systemareimplicit in thedispersionrelationof thesystem[105].Like

ColnpactDifferencingmethods.DRPmethodssacrificepotentialorderof accuracyfor

ilnprovedphasespeedaccuracy,andtheyusemultisteptimest,eppillgmethodsof the

Runge-Kuttat,ype. DRPmethodssacrificeaccuracyin time stepping as well as spatial

interpolation in order to optimize phase speed accuracy ow_r a wide range of normal mode

frequencies [105], [551. DRP n_et, hods are similar to (:ompact I)itferencing methods, but

have been used especially for ('AA simu[ations.

The chief ditticulty with all of these methods is that they are not et:ficienlly accurate enough

for CAA simu]at,ions. The focus of this dissertation has been to produce aulomat, iot_ tools for

developing a new type of algorithm for (:AA. Many algorit,hm realizations haw" been produced

in both t,wo and three dilneusions. All of t,he algorithms of this new type are explici! singh" slep

finite difference methods with t,he same order of accuracy in both time and space. This new typ,

of method uses central stencils, and has both dissipat, ive and dispersive realizations, with fi'om

t,he first t,o the 29 t/' order accuracy in space and tinw in two dimeiisions and three dimensions.

Higher order realizalions are possible but nol useful on today's computers due to roundoff error

(64 bit precision). A particular subclass of this new lype of algorithm has exceptional phase

accuracy, or high resolution.

NASA/TM--1999-209182

10

1.4 Outline of the Thesis

As discussed earlier, it is desirable for both economic and environmental reasons to reduce tile

noise emissions from commercial aircraft. Using a combination of theoretical, exl)erimental and

computational approaches, many advances ill noise reduction have been achieved. If the sources

of noise can be located, it may be possible t.o further reduce noise emissions by modi_'iug the

propulsioil system. However, finding the sources of noise generation ill a turbofan propulsion

systein requires a computational toot that. has sufficient, fidelity to simulate steep gradients in

tile flow fiehl and sufficient efficiency to run on today's computer systems.

To meet those needs, the Modified Expansion Solution Approximation (MESA) series of

explicit finite-difference schemes were develol)ed by Dr. John Goodrich to provide spectral-like

resolution with extraordinary efficiency [33], [34], [35], [36], [37], [40]. The accuracy of these

methods can. in theory, be arbitrarily high in both space and time. withom the signilicanl inefli-

ci,,nces of Rnuge-Kulta based scllemes. These methods were originally developed in one and two

dimensions up to 11 th order accuracy but were extended in this work to three dimensions with

Ul', to .)(.)t/_ order accuracy. The essential idea I)ehind the MESA schemes is to apl)roxmlate Ill('

solution of the partial differential equations instead of approxinlating the individual derivalive

terms of lhe governing equations. The MESA schemes use multidimensional spatial inlerpo-

lation and the constructive procedure in the proof of the Cauchy-Kovah, vsky theorem [30] to

develop a local series approximation to the solution of the partial differential equalion system

in both space aud lime. The recursive Cauchy-l(ovalevsky procedure has been used by Harten

el.al. [50] 1o produce a local third ortler method. The high resolution MESA methods use tter-

milian interl)ola).io|l and l)ropagate the spatial derivatives as well as lit(' solution variahles of

interest, ltermit.ian interpolation is widely applied to the solution of parl.ial diff('reut.ia] equa-

tious, as ill ('ollal.z [18], and has been used recently by Takewaki el.a]. [103] aml Yabe [12,1]

to develo I) the lhird order (:uhic-lnl('rl)olated l)seudol)art,icle schemes which use and l>ropagate

tirs! spatial derivatives.

The complexity of coding the original form of Ill(, MESA schemes was. howe_er, very high,

resulting in code that could not compile or took so long to write in F()RTI_AN lhal they were

remh're(l iml)raclical. Three algebraically equivah'm forms of (he MESA schem(,s we|'e inil)h'-

merited amI COlUl)are(l ill this work in all atleuq)(, to lind an Ol)limal algorithmic iml)lemeniat ion

NASAJTM--1999-209182

11

form. We call these three algorithmic forms tile Finite Difference, the Spatial-Temporal, and

the Recursive Tensor forms. The Finite Difference algorithm form calculates new solution val-

ues as linear combinations of the old solution values which are known on tile stencil. The

Spatial-Temporal algorithm form calculates new solution values as combinations of interpola-

tion coefficients whidl are obt, aiued from the known dat, a on the stencil, and which approximate

partial derivatives of the solution variables. The Recursive-Tensor algorithnl form uses Tensor

Product, spatial interpolation and C,auchy-Kovalevsky recursion for ohtaining time derivatives.

These algorithmic forms are all mathematically equivalent realizations of the MESA methods.

but. not. equivalent, with respect t,o FLOP counts. Tlle l{ecursive Tensor form of the MESA

schemes has the advantage of being simple to code and compih', and il was found to 1)e the rel-

atively more efficient, form with respect to FLOP couni per grid t)oinl per time step when high

accuracy MESA algorithms are used on small stencils, part icularly for higher spat ial dimensions.

A code generation tool was developed and written in Mathematica that automatically develops

particular implementations of the MESA schemes, in any of the three possilAe algorithms forms,

and then produces FORTRAN codes for the MESA scheme. This code general,or creates all the

soft.ware necessary lo numerically solve the linearized Euler equalions on ('artesian grids in two

or three dimensional spatial domains. This tool is capable of generating algorithms of any order

accuracy, though 5_0°' order accuracy appears to be the highest accuracy that is useful while

restricted to using 64 bit precision compui,er hardware. The code generalor can create software

for a second order MESA scheme for t,wo dimensional spatial domains with (!artesian grids and

embedded ob.iects with complex shapes. Tile ability 1o treat, complex geometric object,s with

higher than second order accuracy on a Cartesian grid rmnaills an open research problem in

numerical analysis.

A method was developed for treat, rag solid wall boundaries with arbitrary piecewise smooth

shapes on Cartesian grids in two spat.ial dimensions, with up t.o 11 °' order accuracy on grid

aligned boundaries, and with up to 2 '_d order accuracy on generalized irregular boundaries.

The values of the grid points near t.he solid wall boundaries are found by evaluating a spatial

interl)olanl that is silnultaneously consistent with t.he given wall boundary con(lilions and the

kuown dala oil the ueighl)oring interior grid points. A malq_ing has been dewqoped which

insures that a cousistelll, spatia[interpo[ant call be found for each grid poinl llear a I)oundary.

Lagrangian-ltermitian forms of the spatial int.erpolan! s we,'e shown Io be the mos| etlicien! forms

NASA/TM-- 1999-209182

12

when using a ('artesian grid. In addition, the numerical stability, of the MESA schemes with

wall botmdaries depends upon the order in which the spatial interpolauts are evaluated and a

procedure fbr the proper selection of tile spatial interpolants stencil domains was developed.

Finally, an autolnated method for parallelizing these approaches on large scale parallel com-

puters is presented. This method is an ext, ension of the code generation software writt, en in

Mathenlatica and it. creates code which uses the message pa_ssing interface (MPI) standard for

the parallelization. Numerical experiments with the automatically generated parallelized codes

for the MESA methods have shown nearly perfect, scalabi]ity up t,o 256 processors if a mod-

es! minimal load per processor is maintained by scaling the tes! problem with the number of

processors.

All these features are combined to form a turnkey co(Iv generation tool in Mathenlatica.

If the list of parametric curves commonly found in (_AD files is provided, this tool can then

aulolnatically simulate the acoustical physics by replacing the traditionally labor intensive t,asks

of grid general ion. algorithm development, FORTRAN coding, and wall boundary treatments

with automated procedures. The results of the automatically general ed codes were validat,ed in

several ways. Firsl, the results were compared with the earlier results obtained by Dr. John

(;oodrich in one dimension Ul) to 1 I th order accuracy and in two dimensions with up io 5 tt' order

accuracy. Second, the nunlerical solution was compared to the exact solut, ion of the test problems

while increasing; tile grid resolution, confirming the order of accuracy" of each MESA method.

Third, each FORTRAN subroutine has an analogous Mathematica module which enables the

validation of individual subroutines. The results from the automatically gel,erated parallel code

were validated by comparing lhem Iv tile serial results, and by COml)aring them to the known

analytical solution, for up to :23''_ order accuracy. Sevvral orders of magnitude difference in

the efficiency of t,he methods were observed betweeu the lowes'c order and higher order methods

using ttermitian data. This is consistent with the earlier empirical results of (;oodrich [:37] aud

the thvoret, ical sludies of Kreiss and Oliger [63].

A hrief description of each chaplet follows:

Chapter 2 will discuss the MESA scheme as i! was originally developed by Dr. John

(;oodrich. In particular, the scheme call be divided into lwo processes. Firsl. a multidimensional

polynomial spalial imerpolant is found thal is locally consislvut with the knowa _lala on a given

slvncil. Second. lids locally delined analylical interpolant is advanced in time using the (!au<'hy-

NASA/TM-- 1999-209182

13

Kovalesvky process [126], which generates l.he time derivatives lhat are needed for a Taylor

series expansion ill t.ime.

Chapter 3 will discuss the aut, omation of the three alternative forms of tile MESA schenles:

the Finite Difference, tile Slmtial-Teml*oral. and tile Recursive Tensor forms. Each of these

forms will produce the same numerical results, but. will vary in their execut.ion efficiency and

code complexit.y. A cost. analysis comparing these methods is shown as well.

Chapter 4 will provide tile foundation necessary for solving near boundary grid points. In

particular, an efficient data structure for representing all possible st,encils on a (:artesian grid

and an algorit.hm for etIicienlly constructing il are shown. For small stencils, il is possibh" Io

siguificantly reduce lhe sel of st.encil configurations 1.o under 70 cases t)5" making SOlne simpli_'ing

assumptions and applying rotational and line symmetry. With this small sel of stencils, it is

relatively simple Io find sl)at.ial interl)olants for all near boundary grid points I)5" mapping each

near boundary grid l)oint to tile boundary. The spatial interpolant is consisteu! with tile wall

boundary conditions at, these maplmd locations on the boundary. To ensure linear consistency,

the mapping must ensure lhat more than :/ grid I)oints (nmpped or interior) are never on a

line thai is paralM to a coordinale axis. A complete mappillg for ::_x :{ stencils ill two spatial

dimensions is shown as well.

Chapter 5 discusses a method for finding a spatial interpolant thai is simultaneously con-

sistent wilh the interior grid poillt,s and the wall boundary condilions at the mapped boundary

points. In parlicular, by forming l]le polynomial interpolanI into ils tlernnt.ian-Lagrangian form,

the numl_er of illlknowns reduces to lhe small sel of data elenlenls contained within the near

bomldary grid points. It was possible 1o create st.able 2 ''d order methods in comph'x d(>mains

by carefully selecting the stencil domains for each spatial inlerpolant in a way thal maximizes

tile rise of inlerior grid poim information.

In chapter 6 lhe code gelloralor that solves the open domain prol)le'nl ill IWO (tinlensions is

exlended to the parallel domain. The computat.ional domain is divided using domain decompo-

sition. Messages are passed between nodes with the Message Passing Interface (MPI) using all

asyllchronous conmnndcation mll)lementat.ion. Excellent scalahility was achiew_d for nearly all

the MESA schelnes with the small, higher order tlermitian methods showing the best paralM

efficiency.

Chai)ter 7 provides 112(" numerical results for Ol)(Ul donlain I,rol)h'ms in lwo and 1In'e(" spatial

NASA/TM-- 1999-209182

14

dinlensions using MESA methods that are up to 29 th order accuracy. It. was found that some of

these algorithms are actually more powerful than tile computer floating point hardware (64 bit

precision). The performance of the method for handling complex geometric shapes in a (:artesian

grid was tested in a box that was rotated at. many orientations relative to the Cartesian grid,

and ill a circular geometry which had a Bessel function analytical solution.

Final conclusions are drawn in chapter 8 and directions for future research are given.

The appendices provide the numerical data from the results of chapter 7 and they provide

an example Mat hentatica code for the two dimensional F()RTR A N code generator which includes

wall boundaries.

Throughout this work, each MESA scheme when applied in D spatial dimensions will be

denoted by cSoO in which S represents the size of the stencil it, one dimension and O represents

the depth of data on each grid point. In particular, there are (D+ 1)(O+ 1)/) data elements per

grid point, l:or example, c2o2 in two spatial dilnel,sions, represents the MESA scheme which

has a 2 × 2 stencil with :_(2 + 1)'-' = 27 data elements per grid point.

NASA/TM-- 1999-209182

Chapter 2

MESA Propagation Algorithm

Development

Tile MESA method for algorithm developnlent is presented in this chapter, along with a brief

discussion of properlies of algorit, hnls developed with this method ill two space dimensions (set"

[31, 35, 37]). The acronym MESA stands for Modified Expansion Solution Al)proximalion.

and the method is based upon the use of (!auchy-Kowaleskaya expansions [126] for locally

apl)roxinlating lhe solution of a sysl,enl of partial differential equations. The ME,qA method can

be viewed as a two stage process of local interpolation t.o known data, and then time evolution

or propagation of the local spatial interpolanl. These two algorithm stages are tied together

by the use of Cauchy-Kowaleskaya expansions for locally at)proximat, ing t,he solution in space

and time, or equivalently, for obtainil!.g time derivatives ill terms of space derivatives. Data is

typically known at a single tilne lewq, so thai the mmwrical algorithms generally are explicil.

The time evolution is with local (:auchy-Kowaleskaya expansions, so lhat exact propagators

arc possible for linear constant coefl:icienl, syslelns. If all exact propagator is used for tinle

evolution, then lhe properties of particular algorilhm realizations depend upon the local spatial

hlterpolant.s lhal are used to supply initial data for the propagator. In particular, all of the

explich algorithms which use exact propagators have the same order of accuracy in both space

and time, and they all correctly incorporate wave propagation along characl.erislic surfaces for

multidimensional s,vslems, l,ocal polyl]onfial interpolants ar_' used to al,l)roximate the Ioca[data

NASA/TM-- 1999-209182 15

16

surfacein multil_lespacedimensions,andtheMethodof Undet,ernfinedCoefficientsis usedto

obtainthelocalexpansioncoet_cieuts,Thisapproachisequivaleutto usingmult,idimensional

Taylorseriesexpansionsforthespatialinterpolation,but it doesnotrestricteitherthelocation

ornatureofthedatathat is used,aslongasthelinearsystemfortheexpansioncoefficientsis

solvable.Twotypesof interpolautsareused,withtwodistinctclassesofalgorithmsasaresult.

Thefirst typeof interpolantisordinarymuhidimensionalLagrangian polynomial interpolation

with known solution data given on the local stencil. Tile second type of interpolation is Hermitian

interpolation, and uses data from lhe solution and some of its derivatives. Algorithm realizations

haw _ been developed in one, two, and three space dimensions with from first Io twenty-ninth

order accuracy ill both space and time, and using data from the solution up t,o its fourteenth

derivatives. In one, two and three space dimensions, the algorithms with l,he IIIosl unusual

properties haw_ been developed using tlermitian interl_olation. An emphasis of lhis dissertation

work has been tile exlension of these algorithms to three space dilnensions, and the aulonlalion

of lheir creation and code iml)lementation ill both two and three space dinlensions. Signiticaul

issues were the comparison of tile etticiency of the w_rious Mgorithms. and all assessmenl of how

di|ficult they are to create aud code, even with automated tools. These algorithms are actually"

quite si,nph' to implenlenl if a I)articular approach is used as discussed later.

2.1 Spatial Interpolation

Multidimensional polynomial interpolation is used for the algorit, hms that have been developed

with the MESA method. If f(a', y) is a function with a two dimensional domain. [heu a general

order O polynomial inlerl)o]alion form call he written as

O

]'(a', .q) ._ y'_i,a=,fl(i, j)a'i.qa .
('2.1)

Note that tile interpolation is defined ill local coordinates, and assumes the change of coordinates

(a', y) = (x-x,,, ,q- !I,-), where (a',,, !t:.) is the center of the expansion ill global coordinates. Note

also that tbr i,j = 0, 1..... O,

1 O _+j f
a(i,j) - (2.2)

i!j! O.r' O!t_

NASA/TM-- 1999-209182

17

The interpolation coefficients a(i, j) are obtained by tile Method of Undetermined Coefficients,

with the constraint equations obtained from expanding the interpolant to represent kllown data

oil a specified stencil. There is some flexibility in choosing the data type and stencil layout,

subject to st.ability constraints, and in modi_'ing tlw form of the local interpolanl, subject to

order of accuracy constrainls. The multidimensional intorpolant includes the two separate order

O single dimensional int.erpolants

,_ E °f(x.O) _ Ei__o(i,O)xi. f(O,9) _ j=oa(O,j)._,
(2.:3)

[br expansion abou! (x,., !1_) in x and 9, respectively. 'file cross-derivative expansion coefficients

are necessary for multidimensional apl_roxinlation, and include derivative terms from order 2 to

order 20. It has been obsorw'd in the past that cross-derivativo terms improve slability, isotropy,

and accuracy [34]. Symmetric multidimensional interpolants are advantageous in algorilhms

for the linearized Euler equations because these equations propagate infornmtion from every

direclion along characterislic surfaces.

Biquadratic interpolation on a unifor,n mesh is a simple example of two dimensional poly-

nomial interpolation, and has boon used for previous work with tile MESA method. In this

C as_ _,

'2

f(.r, .q) _ Zi j-c, "(i'j)xi gj (2.4)

If a central 3 × 3 square stencil is used, with expansion aboul the central stencil point and

NASA/TM-- 1999-209182

18

fimction data given at, each point, t]lell the constraint equations are

f(+h, +h)

f(+h,O)

f(+h, -h)

f(O,+h)

/(o,o)

f(O,-h)

f(-t_, +h)

f(- I_, O)

f(-h, -h)

= aoo+aloh+a2oh'-'+(a(ll+allh+a211{-')h+(au'_,+alflt+a22fl'-')fl'-',

= aoo + aloft + a_ofl'-'

= aoo+alofi+a,_,ltl_2-(attl+a111_+a._,lt(-')h+(ao._,+a12i_+a__._,t{2)t(-'.

= a(m + aoll_ + ao,_,h 2,

-_ a00

= aoo -- aolh + ao2h'-',

= aoo -- alllh + a'2oh 2 + (all| - al ih + a21h'2)h + (ao'_, - al'_,/t + a,_,2h'-')h'-',

= aim -- aloh + a',oh'-'

= aim - al.h + a,,l_h'-' - (aol - atlh + a,_,_h'-')h + (ao'_, - a12h + a2,_,h'-')h'-',

('2._)

where tilt' function values on the left, are assumed known, and the expansion coefficients aij =

a(i, j) are to be determined. Note that a uniform mesh size h = /_x =/_q is assumed, and that

this is [lot a necessary restriction. Note also that the biquadratic int,erl)olant has t,hp fourl h order

a,,._, term. For any polynonlial interpolant, tho system of equations for tile expansion coeflicient,s

call Iw written in the general forth

SA = Z, (:2.(_)

where Z is the vector of fun¢'tion values known on the interpolation stencil, .4, is tile vector of

unknown expansion coetlicients, and S is file matrix of expansion data from the form of the

inlorpolald and the geonletry of the I)oints ill the stencil, eXny muhidinwnsional inl,erpolant

must have a sel of ('oo[ficiont oquations that can be solved, and this is the essential constraint

that linlits the choice of interpolants, stencil geonletries, and expansion points.

Multidimensional polynomial interpolation has some flexibility ill the choice of tilt" stencil

that is used. with a conconlit ant variation ill the form of the interpolanl. A biquarlic inlerpolant

('all])e wrillen as

4 a(i,j).,"¢ , (2.7)

with function data specified oil the twenty-five points of a 5 × .5 stenci], aud with various l)OS -

sil)ilitios for the expansion Celll,(q'. A differs,hi possil)h' fourth order int,erpolan! in two space

N ASA/TM-- 1999-209182

19

dimensions is

f(a!, y) -_ (aoo 4- alo;r 4- a20x 2 q- a30 ,/'s 4- a4t) a'4)

4-(o01 4- all./'+ a2l .r2 + a31 a'3 4- a41.r4),q

4-(a02 4- al2x 4- a22 ,r2 4- a32 "r3 4- a42"l"1)Y 2 (2.8)

4-(a03 4- a13a" 4- a23a'2)t,l 3

4-(¢/04 4- a14 .t: 4- a24.r2)g 4-

This interpolant could be used wi(h (,xpansion about the cent,('r of a (wenly-one point stencil

that is obtained by dropping the four corner points of a ,5 × 5 square stencil. In general, there

are more choices for inlerpolanl,s and stencils as the order of the interpolant increases. In the

context, of Mgorit, hm developnlent for the linearized Euler equations, a single step algorithm of

order O in both space and time requires a spatial interpolant that includes all cross derivatives

through order O.

Multidimensional polynomial interpolation also has flexibility in l.lw choice of the data that

is assumed to be known at each grid point. Hermitian polynomial interpolation uses various

derivative vahles as data, with COllSl.raint equations fronl values of file' fuucl.iOll and ils deriva-

fives. As an example, consider a '2 × '2 stencil with four grid points localed at the corners of

a square, and with dat.a for f, f,, J'y. and f,'v at. each grid point. NoIe lhat there are sixteen

degrees of freedom of known data, wit,h four along each grid line in either the a' or .q direclion

A suitable third order interpolant for this choice of grid and data is

3

.f(.r,.q) _ Z a(i" J)a'i'_J ('2.9
i.j=O

For this local al_proximation of f, second order interpolants for ./',. and f._ are given by

_,.,.°'f(.r,!I) _ _:,:'=14=0 ia(i'J)"';-_'_"

(.,',.q) , __,i=,,,j=l ja(i, j),,'i j -1

and a first order inlerpolan) for f.,',a is giw'n by

3

O'-'f (.r,tl)._ _ i-
&r &,,

• _.,j = 1

('2.1o)

('2.11)

NASA/TM-- 1999-209182

2O

Ill this case, with expansion about tile stencil center at, the point in t,he middle of the stencil

square, lhe constraint equations for obtaining the expansion coetticients with function data are,

' h s xh" h a'_3_- a h_ h:S-}-((tO2 +a12O-[(l""_- +(.!32--ifI-.{- -}-(a03+(1137_ + q- 33-_)-_.

= aoo+alo=_, +a.,o-T+a3o --((tot+all-_+a21_+a31-- K .

2 _ tl3 : h 3

h 5 h3 h __ h_S h= aoo--(Qor;, +a'_,o --a30--g-+(aol --a11=,+a'_,t --a3]-g)zT,

'1-((1(1'2-- (tl2W "Jc -- (_32-_--)-_- +(alK_--al:!;_ + -- 33_-1-ff-,

=.--:':. . 3o_- -- (ao! -- (tll_ -1- (t'21 , -- a317 _

h h _ h-' (! h _ h-' -- (I h:_ _tl_+(mr_, - aF_,=,+ a._,._,_-- aa._,N-)-q-- - (ao3 - 13.7 + a_aq- 33-g-jN-,

(').12)

and three sets of four equal ions with similar sign patterns are obtained from the derivative data,

wilh lhe dala for f,. leading 1o the four const rainls

zl-<±'.'-',, ale ±" I, 3oa0_ (at ± 2a.,] h h-' t,2a.,.w_ + :g _ _ =, + 3a3! _-)=,

• h ;'_(13q_ h" . h '{a tl2 _h3+(a_._, ± 2a'_,2=, +)q- =F (a!a ± 2a_'23.7 + • 33-V_ _,

the data for J',j leading to the four constraint equations

(2.13)

h h ") h :*
fq(±h :]:h) = -]'-(aOl ,4- all 77, -I- (1"21-"4- -']'- (/31 _-)

:::1:Z2((1(}2 -}- (t12_ "Jr- -- 4 -_- (13'2 _, ' 2 -1- 3((103 -_- (113_ _- 23_- + (133 g , 4 '

(2.14)

aim the dala fi)l" f,.,_ leading to the fotlr constraint equations

h 3(/31 __)r {±h ::g_) = +(a_l±2a',]=, +
J ,r ,q "_ "2 "

• h h z h , h *,(h -' _.=F2(a!._, ± 2a._,._,=,+ :1(_32q-)=, + 3(al:_ ± 2a._,a=, + .) _s-_q-)

(2.15)

'l'lwsc sixteen equalions for l,h_' sixteen unknown coefficients are nonsiugular, aml can I)e repre-

s,.'nt,',.l in the general form of I+;,quatiot_ (2.6).

NASA/TM--1999-209182

21

Polynomial interpolation is expensive in nnllt iple dimensions [31], and el her interpolants such

as piecewise polynomials [26] are frequently preferred. For the purpose of providing local data

approximations in a.lgorithnls for the linearized Euler equations, the local order of accuracy of the

interpolation is extremely iinportant, since the prol)erties of the MESA type of algorithms are

derived from the interpolant, hi an earlier design, the interpolating coeflicienls were compuled

only once for a particular stencil, and then used repeatedly throughout the spatial grid at every'

time step, so that the derivation of the interpolants and the compulat, ion of the coetticients was

amortized over nnlch use. Later, a nlel, hod analogous t.o divided differences [89] was found l.hat

for higher-order MESA schemes is actually more efficient and is discussed later. Furtherniore,

the use of local polynoniial expansions grounds the MESA algorithni deve]oplnent process in

the tradition of finite difference nlethods.

Posing and solving the interpolation probh'ni is eased considerably by aul,olnaiion with tile

use Of Gr_Jebner hases for niai, lieniai, ical ideals fornied by lloiynoniials [:gl]. In all earlier design

Ibis autoniation solved tile entire niultidimellsional ilii.erl)olation proldeni symltolicallv with

the disadvantage of creating large eqtlaliOllS, especially in three diniensions. Later, the rise of

(;r6ebner bases solutions was necessary ollly for one-diniensional hllerl)olanl,s. This iml/rovement

reduced equation size from millions of lines of code to dozens in the 29 °' order i.hree-dilneiisional

case. A better niethod will lie described later based an l,ensor products. The general prol_lelll

of multidiniensional interpolation is an active area of research and will be discussed further in

chapter 7).

2.2 Temporal Evolution

Partial differential equations are categorized ms ellipi,ic, parabolic, or hyperl)olic depending on

the higher order derivatiw _ ternis. Systems of partial differential equations are categorized in

the salne way. Solutions to equations of each cal.egory have unique prol)erties, and nunierical

nielhods best suited for their sinnlla.tion generally reflecl lhese properties. The lhlearized l']uler

equations are of hyl)erbolic lype, with prol)agating waves as sohitions.

NASA/TM-- 1999-209182

22

In one space dimension, tile linea, rized Euler equations are a hyperbolic system, with

Ou 0u57 +t:5-7 + = 0,

I ri212 ou __7!£+ + O,

(2.16)

where u and p are the velocity and pressure of tile acoustic disturbance, and where l; is the

constan! mean convection velocity. This system is written in nondimensionat form, with l:

given in terms of the speed of sound, or as a Mach lmmber. The one dimensional system can

t)e diagonalized in terms of the Riemann variables _1 = u + p, and ,,,._,= u - p. The evolution

,'qualions for u and t) are added and subtracted to give the equations for ,_'1 and _._,, with

0-7"-+ (U- 1)-5-7 = 0.

(2.17)

The general solution of these equations is

l(.r,t)=,:l(.r-(l' + l)l), ,c.,(.r.t)=,_._,(x-(l:-l)t), (2.IS)

where ,el(X, 0) = wl(x) and w,_,(.r, 0) = _.,(x) are the initial data for wl and _'._,. Notice that the

solution for .,-'1 is constan! along the line x-(l'+ l)t = 11,and that the solution for _'._,is constant

along tlw line .r - (l" - 1)1 = _. These two lines are the characterislics for the one dimensional

system, and information ix l)rol)agated along them wilh the characterist, ic velocities _' + 1 aml

l'- l, respectively. Each Riemann variable solution is determined entirely t)vthe data forlhal

solution variat)le that is propagated along its own characleristic. The solutions for , and p are

ol)lained as linear confl)inations of the solutions for .,.'_ and ,._,_,,so that u and t_ are determined

by data from both ,,.'_ att(l _'._, that is propagated along each charalcteristic. This analysis and

solution I)rocess is called the Method of (qtaracterislics, at,I i! is used for llw dovolot)ment of

numerical methods.

lit two or three space dimensions, the li,warized Euler equations are hyl)erl)olic bul they

('amtot t)e transformed itllO a related systons thai ('all])(' decomposed into SOl)arat(, oquations,

th,,y aro nondiagonalizal)le. In two or tim,,, sl)ace (limensions. info,'lnati(m ix n(,l I)rol)agated

NASA/TM-- 1999-209182

2a

from a finite number of directions along characteristic lines, but from every direction along

characteristic surfaces. It is connnonly observed that a stone thrown into st, ill water creates a

ripple or wave that is all expanding circle. If this expanding circular ripple is viewed in the two

dimensions of the wafer surface, and simullaneously ill the third dilnension of time, then the

local.ion of the expanding wave disturbance is seen as a cone. This cone is the characteristic

surface fox' the waw' dynamics of the problem. In this example, tile wave fron! is expanding in a

circle, which shows the t,ranslnission of information ill every' direction away from the signal source

at the cent.er of the disturbance. The inverse view is from a particular poin! as information arrives

to evolw' tile solution ill t.ime..lust, as informal.ion is radiated in every direction by the governing

dynamics, it. is also received from every direction. Wave dyuamics for nondiagonalizable systems

ill more than olle space dimension are inherently multiple dimensional, and algorithms for their

sinmlation call usefully incorporate this property. This is llOl Ill,, normal praclice, bu! it is

fundamental to the MESA method for algorithm dew'lopment.

Tile problenls typically encountered ill acoustic simulations are purely inilial value or init.ial

boundary value I)roblems. The purely initial value or Cauchy prol)lenl assulnes all infinite domain

with no surface boundaries, and the data for the prol)l,-nl is given in the form of initial values

specified throughout the ¢lomain at a particular time. lnitial boundary value proldems include

surface boundaries, and require both initial data throughout the domain and data specified

throughout time on the boundary surfaces. Except at or next to a boundary surface, both types

of In'ol)lems call be seen locally ill space and lime as Cauchy proldems. The (!auchy-l_.owaleskaya

Theorem gives conditions that guarantee a local solution for (:auchy problenls [126] . If the

governing system has analytic coeIticients, and if the initial dala is analy|ic and is defined on

all analytic surface in space and time, then a local analytic solution will exist. Polynomials are

analytic, so a linoar constam coetlicient system certainly has analytic coefficients. Any data

on a discret,' grid call be viewed locally as analytic, sinco it call be interpolated locally with

polynoudals. A flat. hyperplane defined in space and time I_y a constant time value is certainly

analytic. Conseqt,ent.ly, if a local polynomial interpolant at a fixed time on a given stencil is

taken as initial data, then the linear|zeal Elder equations will have a local analytic solut.ion in

space and l.ime.

All analytic flmcl.ion ('all bo l'epresellt.ed as a COllvergell[powor series, and the (:auchy-

b2owaleskaya Theoreln shows how a local sories solution ('all be conslrllcl.ed. Tho key issm"

NASAJTM--1999-209182

24

ill developing power series solutions for Cauchy problelns is t.o modify a general Taylor series

expansion hy using the governing equations t.o transform t.ilne derivatives into space derivatives.

The linearized Euler equations give the first, t.ime derivatives in terms of first, space derivatives.

In two space dilnensions

O, _. 0, O, Op
Ol - _ - l'i)tl Ox' (2.1!))

0 _, l" 0 v /9_' Op-- =- I' (2.20)
Ot Ox O q Oq'

Ol__J__ _ Op Op /-)u /9v (2.21)
Ol -- 1'0-7, - l'i)y &r O q

Higher order derivatives with linle differentiation follow from these equations, such as

0"-'. ./92 . 0'-'_l 0'-'p

/gtOz - I _ - I'Oy/9 z Oz._,, (2.22)

_-1lid

itt-' -- _t,l'_t t ilyi)l i),ri)t

i_.r \ itJ. -- _" oy i_.r

i).r b_9 ¢)x
(2.23)

,', _,:,, - o-',, i-'_._-,, 0:, 2_'_ +2I" _-'r= (I- + 1)_ + 2!'I _ -F _ -I- 0.,-i_--_j-4- _,.._ o.,.z_u'

with similar forms for other d,'rivatives if they ar¢_ needed, and where ir: and I are constants.

The' procedure of transforming tinw derivaiives into space derivatives by means of the governing

system of ¢_qualions has been applied before - in the development of numerical methods [50].

Note that the mixed a!l and the secoml order I derivatives are both expressed as combinations of

s_'cond order spatial derivatives. For a [irst order linear syst,eln with constan! toe,if|clients suc[l

as the" linearized Euler equations, the terms with time derivat.iw_s arc expressed as pur_qy spat ial

derivatives with t.he same total order. As a ('OllS_(|tlell('e of t.his, if the initial dala is a finite' order

polynomial, then lh_' order of the' lim_ _derivat.iw _ terms lhal occur in a local analytic soh:lion

can only b_" as high as l.h_ highest or{ler pro'{ _ st}a('_' {h'rivalive terms. This iml)li_'s thai if |.h,_

NASA/TM-- 1999-209182

25

initial data is a local finite order polynomial, t,hen the local convergent power series solution is a

finite degree polynonnal in space and time. t_olynomial closed form exact solutions are possible

for the linearized Euler equations in multil)h' space dimensions.

Consider now the develol)menl of all algorithm for the linearized Euler equal, ions in two space

dimensions with a 3 x 3 central stencil. The biquadratic int,erpolant 2.4 is used I.o approximal.e u,

v, and p on the stencil. Recall that the biquadrat, ic expansion includes l,he fourth order coefficient

that. corresponds to the a4 derivative. Consequent,Iv, up Io fourth order time derivatives are

possible for the local analytic solution with this initial data. The general solution call he found

by the (?auchy-Kowaleskaya procedure, or in the following equivalen! manner. (!onsider local

expansions in space and time with lhe ['orm

i,a(d_,.q,l) EY, j=I) v''_4-Ii+j)*.t: : tr)d,i.qJ 2 k= 2.. k=0 t_ t, j, ,

• V"4-1i+Jtu(i,j,k).ri_-a" (:2.24),,,,(..,.t) = -'

" X-'4-(/+J) v(i,j, k)a'i.q j .t:.,,(a',.q,t) = ZT,j=.z_a-=_ - '

where time lerms Ul> lo fourth order are included. The terms with k = 0 corresl)ond to space

derivatives, and their rabies are obtained from inlerpolating the data on the stencil. The lin-

earized F,uler equations are applied t,o the expansion forms 2.24, resulting in three expressions

in a', ,q, and I..S'iuce a solution form is being sought., the equalions are forced to he satislied uni-

[brmly in all three varial>les. This requirement results in relationshil)s tha! define t.he expansion

coefficients with k _ 0 in t.erms of tile coefficients from the spatial inl.erl)olant, aud resulls in an

exact local solutioll ill space and time, jllst, as if tim (:auchy-Kowaleskaya I>rocedure had beell

used. Because the local al>proximaliotls in space and lime are exact, solulions to Ihe linearized

Euler equal.ions, they correct.ly incorporat,e the wave dynamics of the syst.em. This includes

propagation along characterislic surfaces as long as the entire base of tile characlerist,ic surface

is inside the footprint of 1.he slencil for the spatial int.erpolation. The entire local approximal.ion

in space and time is not llee(le(] ill or(]er 10 cal('ulale the evolution of lhe solution at the slencil

(-enter. A solution value a! the new linle level in lhe stencil cenler can I>e oblained by evaluating

the local spa<'e and tilll(" al>proximations at (,r..q, 1) = (0, O. k) in local <'Ool'dinaWs, where a' = /XI

NASA/TM--1999-209182

26

is the time step size. If spatial interl)olat.ion is with the biquadratic 2.4, then lhe resulting exact.

l_ropagator algorithm is

n+l
Pi ,j pa(O, O, t')

Poe

+k(- My P01 - M.HJl o - u 1(1- vo I)

+k'-'((1 + My")po_ + Mx),lyptl + (1 + M_)p_o

+.llyull + 2.1I.,.u_(_ + 2Myv¢_2 + _l/.r Vll)

+k3(-(M,. + Mx Mj)pa'_, - (M._, + .1I_-'.3I,s)1'0-_

-(½ + M,j),I.: - _M,.M_,,.:,- _M,M,_,,,._,- (._+ :W),"-'l)

+_._'((_+ _t._+ _W+ _C_I,,y)p._,._,

• " "' 2M;.My)v.,.,).+(_ M,. + 2M,. M,7)u'2_ + (a M,j + " __

,a(O. O. k)

+k(-plo- M,s u(_l - M.,.u_)

+ke(M_,p,1 + 2M,.I",_ + M_-uw2 + Mr M,j ul 1 + (1 + Ms.-)u:.,o + 1=,_'1i)

+,1.3(_(_ + M_,-)PI'-' - 2M,.Myp2l

-M,. Mr-' uv_, - (M_ + M,."II_)u2_ - M_ t'12 -- s'llx t'21)

• i q 1 'J ") '3

+k4((:SM.,. + 2M,.3l,j-)p._,._, + (,5 + M,j- + M,.-M,j-)u22 + 2M_My _,.,.._,),

(_.25)

,+I
'i.3 ca(O. O, k)

1'()0

+k(-I'ol - My t'_,l - M_-vlo)

+k:_(-2M.,.M_pl'_, - (½ + M))p'_,t

-M.u t*_._,- 3I,.u._,_ - (M_. + M_.M_)Cl., - :II'_'M_ t,._,_)

" . __ _ " 1 "'_ '-')t,.,.,).+k4((_ M_ + 2M'/.3I v)p2_ + 2M,. J_l_ u.,., + (_ + M; + : I; _ I v __

Notice that algorithm 2.25 has the form of a time expansion with terms up to k 4. A second

order Taylor series ,'xpansion in time is obtained if algorithm 2.25 is truncated by drOpl)ing tlw
e

NASA/TM--1999-209182

27

O[/¢ 3] and O[k 4] terms. The second order time expansion with a symmetric 3 x 3 central stencil

can be viewed as a two dimensional Lax-Wendroff method [68]. The Lax-Wendrofi e method does

not include the higher order expansion terms that are required to properly propagate the local

second order nmltidimensional spatial inlerpolanl. If bolh nlethotls are written in the fornl of

Finile Difference algorithms, as weighted sums of the data values on the stencil, then they will

both require the same number of multiplies and adds.

The particular algorithnl form 2.25 is an example which shows an application of the general

MESA method which can also be extended lo arl)itrary orders of accuracy with different inter-

polants. If local polynomial interlmlants are used with just the solution data assumed known on

a symmetric multidinwnsiona] stencil, then the resulting numerical algorithms are stable if [34].

A =- < (2.:_6)
h - l+max{]l:[,[_'l}

Algorithms with exac! prolmgators can also use tlerlnitian inierpolants, but tile resulting al-

gorithms are unstable if central stencils are used. This problenl call be avoided if allernating

h in bot.h x and .q. For thesegrids are used, with a time separation of ,_. and a spat.ial offset of _,

Hermitian lnethods on staggered grids, the data at each grid level is a real sohlt.ion, and the

numerical algorithms have the same stabilit.y limfls as the methods which use only the solulion

data on central stencils. Tile numerical methods that have been derived for one or two spa!ial

dimensions with Hermitian interpolation have shown spect, ral like accuracy [:{5, 37].

NASA/TM-- 1999-209182

Chapter 3

MESA Propagation Algorithm

Automation

It is necessary to automate the development of higher order numerical algorithms using th("

MI_]SA ln(,lhod because of the growth in deve]ol)nlent COml)lexity as lhe order of accuracy in-

creases. The elticiency of the higher order algorithl]lS compensates for their COml)lexity.

l)erhaps one reason why commonly used mmleri('a] schemes are limited in their accuracy in

real apl)licalions is that higher order schemes and their I)oundary treatments are to() coml)licated

to develop without automated assistance.

For example, the leading COml)utational aeroacous! its algorithms typically use]'_unge-Kut t a

met hods for compuliug time derivatives. However. (l¢'riving high-order R unge-Km t a met hods is

m, *'asy lask. The first ditticulty is in finding the so-called order conditions, which arc- nonlinear

equalions. The secoml difficulty is in solving thes_ _ equations; There is generally no unique

sohl!ion, and many heurislics and siml)lit_iug assuml)tions are usually made. In addition, there

is lhe I)rol)lem ofcoml)inatorial exl)losion. For a twelfth-or(hw melhod lhere are 7_13 order

comlilious [12:1].

A s! rength of the MESA method for algorithm develol)ment is its natural adaptability to the

use o[' COml)Ul(,r a]gel)ra systems. The method provides order and structure which can b(' auto-

mat,'d. The symbolic differentiation and l)olyuomial system solw,rs of coml)uter algebra soft.ware

package's (Math_'matica is used in Ibis work) are some of th_ _ basic fi'atures tlw aulomation of

NASA/TM-- 1999-209182 28

29

theMESAmethoddependsupon.Mathemat.icaalsoprovidesthecapabilitiestypically associ-

at.ed with LISP (LISt Processing language) in which lists of symbols may I,- data, flmctions, or

both simultaneously. This duality of symbol definition enables the autonlated FORTRAN code

generation utilized in this dissertation.

This chapter will address t.ho automation of the MESA propagat, ion scheme without wall

boundaries. The balance of this disserlation will build upon this capability by addressing the

incorporation of wall boundaries with complex geometries into the computational domain.

3.1 Spatial Interpolation

The tirst of lwo steps required for the MESA scholne discussed in the previous chapt('r is solving

the spatial interpolation problotn. Two methods for its automatic solul.ion will 17,, discussed, the

(;eneral Form and t,ho Tensor Form. In lhree dimensions spatial imerpolalion using t,ho (;eneral

Form was a failuro; it simply t,ook too much time using today's technology, ll was possibl(" to

goneralo a c2o2 Mgorillun in about a weok on a fast worksl,ation]nit t,h(" nulnber of equations

overwhehn¢'d all compilers, ew'n lh(_ CRAY's FOIITRAN.q0 compiler. Fort, unalvly, the 'lOnsor

Form not only greatly siml)lfies t,ll(' solution of the spatial coetlicients, })tit it is actually more

etficien! for lhe higher-order algorithms. However, lhe techniques &'vdoped for the (;eneral

Form are useflil for understanding the Tensor Form and a full discussion of its (levelopment and

application will t)e presented. In addition, both method's extensions to'lD are discussed.

3.1.1 The Interpolation Problem in 2D

The osculating polynomial inlerl>olat.ion problem solved ill this work is dofilletl for all ._.' × N

grid region (see figure 3.1) with data al each grid point lha! contain t,he following scalar data

up to order 2D al each grid 1)oint:

i)i+J'f-, :gi, j : (i,j = 0.1 D). (:_.l)
t_x' Oil ,J

whore f(.v, !I) E t? '-'D is defined in Q and known at. the grid point.s of the stencil in figure :_.1.

NASAJTM-- 1999-209182

3O

• • • #0 • •

• • • IT • • •
• oDo • • •

• • • • • •

• • • • • •

• • • • • •

Figure 3.1: Square region f_ of area ((N - 1) × h)'-' with known data points indicated with dots

"File form of the local interpolating function defined over each stencil domain will be:

f(.. :D= ,,(i, j).',¢ la.)
i j

The coefficients a(i,j) are det, erlnined by solving the linear system formed by the list of infer-

polators :f.2 evaluated at, each grid point in the stencil. This linear system was discussed in

section 2.1 and is represented as:

SA = :J (a.a)

The unknown coefficient vector A needs t,o be solved symbolically. Each coeflicienl will be

a linear combination of stencil data from vector Z. The vector Z comains algebraic variables

as opposed to numerical data. This information will be used later t,o develop a finite difference

scheme for time advancing the stencil's center grid point prmfit, ive variables and their spatial

derivatives. Since this same stencil will be applied t,o every grid point in the domain, the actual

data values will change: Hence it is necessary t,o symbolically solve for the vector M.

The osculating l_olynomia] interpolation svsl,elll :_.:_ call be solved ill lwo Ways. depending

upon the stencil's prol)ert, ies. If the stencil is Oil ,_111irregular grid then it is necessary t,o use a

loss etticient (;eneral Form described next, which when arranged into a particular form, can be

lllOre efficient ly solved. The algebraic rel,reselfl,ations of these lnore etficient forms are ll('cessarily

complicated by nolation and do not provide insight, into this discussion. A clearer understanding

is provided using the pyramid mneumonic discussed next. If the stencil is on a uniform (:artesian

grid however, the Pat" inore efficient Tensor I:orlli nlelho,.I _:.|'spatial interpolation Call I.'. lised.

NASA/TM-- 1999-209182

31

But first., the General method will be addressed as this provides insight into the Tensor Form

method to I,e discussed later.

3.1.2 Pyramid Representation of Basis Coefficients in 2D

It is possible to represent the coefficients a(i,j) of equation 3.2 in a pyramid structure that

resembles Pascal's triangle like that in figure :1.2. Each pair of numbers in the pyramid corre-

sponds to l.he pair (i, j). The figure shows the pyramid number 22 corresponds to coefficient

a(2,2). Numbers larger than 9 may be represented with hexadecimal digits or some larger nnm-

her syslem. In figure a.2, the first numl)er of the pairs starts at 0 at the top of the pyramid

and increases at. each level by proceeding down and t.o the left.. The second number ill the pairs

increase down and t.o the righl. Each horizontal s[ice of the pyramid contains coeflieient.s rep-

resenting binomial basis terms of the same order. For example, the level designated by D = 1

represents a(3,(I), a(2,1), a(1,'2), and a(0,a)all of which represen! 3 '''t order derivatives and

multiply a 3 "d order binomial term a(i,j)xij for all i,j >_ 0 such that i+ j = 3.

It is also a properly of this pyramid that the sel of binomial basis functiol> represented by

the pyramid are of ow,rall minimal order. For example, it wouhl be possible to replace the pair

30 with A0 which represelfl.s coefficient a(10.0) and still have a consislenl linear sysl.eln 2_.'{.

But then a gap would forni ill the pyramid and extra nmltiplies would be incurred since the

interpolant now has lhe t.erln o(10, 0)x 1° which has ten multiplies instead of the three in the

previous case. Also, the time advance of the primitive variables using the },lENA scheme requires

the a(3,()) spatial coefficient.

Ill figure 3.2 the coefficients fornl diamonds (diamond-gronp) of N'-' e]enlents shown an a

dashed diamond. The MESA scheme's stencil dimensions will determine the size of t]le diamonds

in the figure. If the coelficients rel)resenled by the nulnbered pairs contained within a diamond-

group are seleete(l and placed in a vector Aa. Then it is possible t.o symbolically solve lhese

coefficients independently of the other coetticienls. The coefficients will I)e linear combinations

of the other coefficients in the pyramid and linear combinations of lhe stencil data of vector Z

in the right hand side of linear system equation 3.3.

An even smaller set of coefficients C;tll lye solved a_ a time using 1.h,' ordering show,l in

figure Z.:L This ('asc is for a 2 × "2 stenci], wil.h minimal ('ross-derivatives. anti all minimal

derivative terms u I) to lhe Ith or(let on the stencil. The numbered pairs (('oelficients) are

NASA/TM-- 1999-209182

32

a(0,0)

i

D_0oooelolmoooooooooooot

D=I

D=2

D=3

D=4

N=2

90

Is a

70

80

81 <va 6s>
\ /

diamond-group

.z \
r 30 2 _-_12 03

_ 06/,\

61/',,,52 43 _34 25 16 /'07 "\

71/62 \53 4_ 35 a6 <_7 08>/

5455_5 363727 1 \18/'''1909

Not a diamond-group

a(2,2)

Figure 3.2: Mininlal cross-derivative pyramid representation showing diamond sub-structure for
.V =2 and I)=.1

NASA/TM-- 1999-209182

33

O0

10 O1

20 11 02

30 21 12 03

4O 31 22 13 04

50 41 32 23 14 05

60 51 42 33 24 15 06

70 61 52 43 34 25 16 07

80 71 62 53 44 35 26 17 08

90 81 72 63 54 45 36 27 18 09

91 73 55 37 19

Figure 3.3: Pyramid representation showing lille sul>structure for 3,: = 2 and D = 4

selected from this l)yramid in groups of two, 1)3' following the darker line froln lhe top to lhe

herren1 left in which the right numl)er of each pair is equal to 0. Then following the light line

in which the right number of each pair is equal to 1 fl'om top to bottoln loft. Hepeating this for

the lines containing pairs with right numbers equal to 2, 3, 4, 5, 6, 7, 8, and 9, in that order.

In this manner, all the llllknowll coetticients may])e solved in 30 groups of 2 which require

the sohllion of 30 simple 2 × 2 niatrix sysl(qllS. (_onlpared to the fifl,eell '1 × 4 matrix syst,elllS

froln dianlond-groulfings, and compared lo the one 60 × 60 nlatrix sysielllS with no grouping,

il is vastly mow etficienl to use lira' grouping when symbolically solving lhe linear syslem of

polynomial e(tual iOllS ?;.3.

To obtain belier accuracy and isotropy, all t]w cross-derivative lerms are used as shown in

figure 3.4. Again, line grouping is used for efficiency. 1)efine the VOclor ,A ill equation 3.3 by using

the coefficients in the order found by traversing the pyramid in line groups. Now, with .A defined,

the matrix __',7will be completely defined when the vector Z is detined. Figure 3.4 provides allOl her

nl.neunlol|ic for ordering Z. The smaller square underneath the now familiar coel[icient pyramid

(square in this case), provides derivative information (referred to as the derivative pyramid).

Each dialnoml in the coetlicienl, pyramid is linked to lhe diamond of I he same t.opological location

in t,hv derivative pyramid. For example, in tlw case shown in figure 3.4, there are 25 diamonds

in I)oth pyramids (squares). The diamoml ill the coefficient pyramid containing nunfl)cred pairs

42,43.52, and 53, corresl)onds t,o the diamond in the derivalive pyramid containing the single

nunll)ered pair 21. This corresl)ondence will be used to (h'fine v(wtor Z. The firsl llllllll)(q" of

each numbered pair in the derivatiw" pyralnid represents the order of a derivalive with resp(wl

1o lhe x-axis direction; And the second llUlllber of the pair rel)resenls the order of a derivative

NASA/TM-- 199%209182

34

withrespectto tile y-axisdirection.

Thestencilcorrespondingt.oN = 2 is also shown ill figure 3.4. The nunlbers ill lhe stencil's

grid points show the ordering in which the spatial interpolants 3.2 are evaluated. It is the

combination of the sequence of the stencil locations and the line groups wit.bin the derivat.ive

pyramid which determine the precise ordering of the elements in vector Z. If N were larger, the

nunlber of elements in the diamonds of the coefficient, pyramid and the stencil size wouhl increase.

But the derivative pyramid would still contain a single numbered pair per diamond. The larger

stencil would still use row-major ordering starting with the botton, row in the bottom left corner

of the slenci]. The total nunlber of diamonds wouht not change with larger N, }>lit will increase

as D is increased. Larger N and/or larger D bolh result in more unknown coefficients, a(i,j). The

illllll])er of coefi'icielits (or degrees of freedonl) del,ermines tile accuracy of t]le SC[lelue, regardless

of the aclual size of N or l). For exanlple, ,\: = 2 and D = 4 will l)roduce the same accuracy

spatialilflerpolant as N = 4and D= 2. However, snlallerN results in easier spatialinterpolam

solutions and larger D results in numerical schentes with better resolution properties. But,, very

large D values of ten or more can restllt, in significant roundoff error on colnpul,er systems wit]l

(H-bit precision. This effect is well known when COml)ul,ing divided differences [89].

3.1.3 Polynomial Ideals and Solving SA = Z in 2D

The linear system of polynomial equat, ions 3.3 for l,he interpolalion lirol_lem Call be written in

I he forni

I =< ,.g.A -- ,Z >C C[,r, y, .:], (3.6)

where C[.v, !1, :] is lhe space of polynomials in (,v. !/, :) with complex coet:t:icient,s, and where l

is the ideal defined by the Hermit, tan polynomial extmnsions associaled with each grid poinl.

The ideal I has a set of (;rSebller basis polynonlials thai call be used to solve for A. !1 has

been shown that lhe COllSl,rtl('t, iOll of a (]r()ebner hasis ilsilig Buchberger's algoril, lnn for all ideal

gellerate(t by polyllOlllials of degree less i,]lail or ettua] t,o d ('all involve polyliOlllia]s of degree

up Io "27`_ [76].]'he colnplexily of conslrucl, ing lhe (h'i_el)ner basis can he dranialically afl'ecled

I>y the ordering of the indel>endeni variables [21]. All oplinlization in the forinulat,ion of lhe

llcrlniiian polynoinial inlerpolat,ion problenl dranialically reduces ils conll/lexity.

The order of accuracy of lhe lwo-dilllellSiOlial Iternlitian llolynoulial interllolal,or ill this work

NASA/TM-- 1999-209182

35

Coefficient Pyramid

Stencil Secruence

...... D=0

• . .D=I

• . .D=2

.D=3

Figure 3.1: MaxhnM Pyramid represeutatiou showiug stencil evaluatioli seque wo and derivat ire

assiglllllOllts for cnse :_ = "2 ;',lid I) = 4

NASA/TM-- 1999-209182

36

-h h 2 -h 3 -h h 2

1 _') 4 8 _', T
h h 2 h a -h -h 2

1 7 --4- -g- T, 4

0 1 -h 3 h2 0 -h
't "}

0 1 h 3112 0 -h
4

[-h h 2 _h a h__ -h 2
2 4 g _'2 4
h h 2 h a h h 2

1 _, -T -_- _ _-
h0 1 -h 3h: 0 _,

4

0 1 h 3 h -0 0 L,
4 2

0 0 0 0 I -h"-T
h

0 0 0 0 1 _-
0 0 0 0 1 -/,"77-,)

h0 0 0 0 I 17

_h 3 h 4 h 2 _h 3 _h a t24

8 I(-T 4 8 8,

-h 3 _tl 4 h 2 h c; _h 3 _tl 4

Th-" -3h _8 0 _h" 0 -h:;8

-h2 --3/'3 0 " 0 -h3
2 8 4 8

h a _h 4 h 2 _h a 113 _h 4

8 16 4 8 _- 1{;

h 3 114 h 2 h 3 113 h 4

-g- I_-T .-T T -_- l,-X, (3.4)
-h2"-"7 31138 0 "_-112 0 -'_h:_

h 2 3h 3 h _

- 4 8

h__ -h a
4 T -- h h_._." 3 h 2 - 3 h :_') 4 8

h" h :_
4 T" -- h - h 2 3 h 2 3 h :_

"2 4 8

h-' -h _ h -h 2 3h" -3h _
4 8 "2 4 8

h: h_2 h h2 3 I,: 3 t,
4 R "2 .'t 8

Figure 3.5: Matrix ,5 wilh grid size h, N:2 and I):l, soh'ed by lines

1 -h -h t,2 h 2 -h '_ -h a h 4 h" -11 3 -h _ 114
"2 2 _ 4 8 8 1,-T 4 a 8 1,-T
h -h -h-' h-' h a -h a -114 h 2 h 3 -h _ -h 41 -
'2 '2 4 4 "8- 8 1 ,_ -4- -_- _ 1 ,:;

I -h h -h" h a -h "_ h 3 -tl 4 h" -h _ h _ -h "l
'T .T 4 4 8 -_- 1 {'--7, 4 8 T I f;

h h h ' h 2 h 3 h _ h 4 h -' h s h 3 h 4
] -- _

•2 '2 T T T T IT, T T T TT
0 0 1 -h --It 1'2 3h2 -3h-' 0 0 h" -1,'

---7- T 4 8 T 8

0 0 l 12 -Lt -h2 3h:" 3h s 0 0 h2 h_
•2 '2 4 8 .T T-

O 0 [-h h -h 2 3 h 2 --3 h a 112 -h _--;7- "2 4 s 0 0 T 8

(J 0 l ;7,h]1 _h2 3h24 3h:*8 0 (J "7h" -_tl_

-=--,-/' 0 TD 0 - sh' -- h 34t': =-,h,: - 3_t, :'0 1 0

0 1 0 -=-,-h (} h2 0 -h3 h 3h: -h-' -3h'
' _" _ 4 '2 8

h h 2 h '_ -- h 3 h " - h 2 3 h{1 1 0 _, 0 T 0 -g- 4 "2 s
{} 1 0 h 0 h ' 0 h :' h 3h2 h -' ah'_' T T 4 T s

(3.5)

Figure 3.6: Matrix ,.q with grid size h. N=2 and I)=1 solved by diamonds

NASA/TM-- 1999-209182

37

isbaseduponthesizeN of tile stencil in one dimension, and the highest order D of tile derivative

terms on tile sl.encil ill one dimension. Tlw order of the spatial inlerpolator polynomial will be

N(D + 1) - 1, (3.7)

where it is assumed that all single dimension derivatives up to order D and various combinations

of nmltiple-dimension (mixed or cross) derivat.ives up to order 2D are included as data at each

grid point. For example, an eleventh order scheme (3,' = 4,D = 2) is possibh" on a squar,"

4 x 4 stencil with solution data and first, second, third and fourth order (cross) derivatives of

the solution data at. each grid point. In parlicular, a single grid point, would contain 9 pieces of

information, namely:

OD,,,f(.,', ;j)

t).r' !l"
gr,.s :(r+ s = D,, and D,, < 2) (3._;)

or f(a', !1), f,.(a', !I), f.,..,. .r, !1). J'v(,r, !t), f,av(;r, .q). J_,j(.r, y), f_j.v(.r, .q), f._wj(.r, !1), and ./.,.,_vy(a', !I).

Solving the enliro linear syst.em by directly inverting ,.q of equation 3.3 exhausts available

computer resources for even moderately sized lu'oblems, llowever, by rearranging the inlerpolant

basis matrix $ it is possible t.o form invertible sub-blocks of size N × N down t.he main diagonal

that. markedly decreases the cost of inw_rt.ing S. In figure :_.5 an _xample coefficient matrix

S is configured using line-group ordering: And ill figure 3.6 the same matrix ,',7 is conligm'ed

diamond-groups. The line-group sequence creates a mat.rix with more zeros in the bottom-lefl

corner of the mat.rix form for ,.q lhan the diamond-group ordering. For ewm .\', lhe specific

ordering for the w'cl,or ,A of expansion coefficients a(i,j)is:

a(O,O)..(1,O) a(N(D+ 1)- 1,O),a(O, 1),a(1,1)

a(.V(D+I)- 1,1). ct(0, 2) a(.V(D+ 1)- I,N(1)+ 1)- 1).

NASA/TM-- 1999-209182

38

Tilespeciticorderingfor thevectorZ of stencil data is described using the following pseu-

docode m figure 3.7:

ht degree = D
N

l_t maxi -- T
let index = 0

for dy = 0 to degree do

for j =-nlaxj to maxj do

for dx = 0 to degree do

for i = -maxi 1o maxi do

if(i # O) at, d (j # O) then
_f(i < O) the.

xcoord=i+l

xcoord=i

c11dg

_f (j < O) the11

ycoord=j+ 1
C l,';(

ycoord=j

e. dg
index=index+ 1

if X ts odd then

(1st

_.d4

. dd

I_dfo rloop

_ .dforloop

I_dfo rloop

ii dfo Hoop

Oa*+au.f(.v=.r,'oordh ,y=yc'oordh)

iJd_',vOdVy

U a'+d_' f .r:.rroo_.'dh- I"c¢°r41 h y=yec, ordhwc,,,,rd _ '

OdrrOdVy

I v,:o_,,'dl *,
_c.or,t 7)

Figure 3.7: Pseudocode for correct ordering of vector .Z

The ordering of the vectors A and Z completely determine the form of the matrix S.

The osculating polynomial interpolation funclion formed will be :

N(D+I)-1 N(D+I)-I

f(x,y) = _ Z a(i'J)a'i'qj (3.9)
j=l) i:l)

With the system of equations 3.1:1formed in the proper order using the line group sequence.

it ix now possible to etticienlly solw' t ho coe[ficienls in A. Starting with the firsl N equations

o1"tl,e tin,' order,.d sysl.elII :{.:_. SOlVe' the firsl N coe[liciellls ill M. '|'bOll sllbslitute l}les¢' reslllts

inlo M aml solve the next N co,-'tficients using lhe nexl N equal.ions. I'roceo,.I in this manner

NASA/TM-- 1999-209182

39

until all the coefficients are solved for.

After all N='(D + 1)'-' coefficients of A are solved using the above implementation ill Math-

elnatica, they will be expressed ill tile simplest algebraic form as a linear combination of some

or all of the elements of Z. Mathematica is developing a parallel version of its software which

could be used in solving all line-groups simultaneously. In addition, much research is currently

being done ill the area of parallel Gr6ebner basis solul,ion solvers ill the field at large. These

developments will be useflll for some of the irregular grid challenges encountered in COlnplex

geometry interpolations.

3.1.4 Tensor Form Method in 2D

The ditliculty of the General method just described is that 3D problems are too COlnl)licated to

solve using currenl technology, despite tile efficiency of using lille-gl'OUl_ ordering. "File length

of the algebraic equations produced by the General method for three-dimensional cases can

be over a million lines of cod< The latler issue call be minimized by conlbining tile spatial

imerpolant coetticients directly into the fill tinle advance form to reduce the prolAeln to its

explicil finite difference fornl in which the evolved dala is a linear combination of lhe slencil

data fronl the previous tithe siep. Ill ibis explicit fornl, each data element in the slencil has

all equation associated with it. that is manageable for low order schemes. This simplification

only applies to the constant coefficient linearized Euler eqnations. Iflhe convection velocity is

constant, then the explicit form reduces I.o a single COllSlanl for each data elelnenl ill the slencil.

This process shift.s lhe burden from tile, FORTRAN compilers to Mathenlalica, wllich can take

weeks to produce a single code with explicit finite difference formulations for 3D schemes higher

than third order. Moreover, the overall purpose of this researcll is to solve variable coefficient

and nonlinear Navier-Stokes syslenls; Therefore a better process is required.

The Tensor Fornl melhod never al, tenlpts [o provide all explici! equation for each spatial

coefficient, hlstead, tile solution of the coetticients is expressed as a set of DO loops ill FORTRAN

that must he executed at each stencil. In this %rm, it is considerably easier to colnlfile l.he

resulting code and it. improves performance since it. reuses derivative infornlation ill lnllch lhe

sanle lllanller as Newlon's]nterl)olalory Divided-Difference algorit,llnt [15], This ilnprovenlenl

is discussed later and il's advanlage ill lhree-dinlensional applications is demonstraled.

The key idea of the Tensor l:ol'ul method is to illlerpolale ill ()Ill 3 one-dilnension al a lilllC.

NASA/TM--1999-2091 g2

40

Tile functionandils derivativesorthogonalt.otile interpolateddirect.ionareinterpolatedfirst.

to the mid-l)ointof tile stencil. Thentheseinterpolatedvaluesare reusedill anotherone-

dimensionalinterpolationin thenextdimension.Finally,if its tl,r('("dimensionalproblenE,one

additionalinterpolationisperformedthai.reusesthesecondinterl)olationresults.At not,imeis

morethanone-dimensionint.erpotaled.

Forexample, define a one-dimensional interpolating function of order O as :

O

f(.r) = _ a(i,0), i
i=(I

(3.10)

and let (x,y)=(0,0) 1)e the center of(he stencil.

In 2D, the order of accuracy, O, is determined I)5" the numl>er of data elements along one

row of the stencil minus OEle (counting only those elenlents whose (lerivat.ives are in the same

direction as the interpolation). A 2 × 2 st.encil has 2 grid points in either the vert.ical or horizontal

rows. In a horizontal row using t.he c2o2 MI';SA scheElle, f, f.,., f:._. are the data eleEElelllS at each

grid point whose derivatives are in the direction of interpolation.

In this case lh,' MESA schenE(' is ,5 t/' order, (2 × 3)- 1 = 5. and therefore so in equalion 3.1(1.

The a(i, 0) are solved in equation 3.10 using conEl)uler algel)ra as described earlier, aml can

I)(, solved in line-groups as well. An additional simplifica(.ion in lo divide the system into two

set)arat.e s vst.(,,ns, one containing the even and the other conl.aining the odd d('rivative coetti-

ci,'nts. ["or examl)l(', tiE(" fiflh order cast" ('ale remove all t.h(' od([sl)aiial co('tticient.s terms. (the

a(i.0) terms when i is odd), by obs(,rving f(a') + f(-a') relnOVeS the odd derivatives. Similarly.

:¢) *': -'"> will remove the even let'ms. Each system is t,h('n solved imlependentlv for lhei) .r O ,r -- .

a(i.0) co(?tlici('nts In practice. 14 t/' order or higher systems ne(,d t.o be separated in(.o odd and

(%('El S/Eh-Sys|('IEES aEEd l.hese sul>-syslems need solv('d using line-group ordering.

Afler the linear s)sleEn is solved, ihe sl)at.ial co'tficients from equal.iolE 3.10, a(i, 0), will be a

linear comhina|ion of tile function, f(x) and its x-derivalives evalualed al (h(' grid points in on('

row of the slencil. If th," origin is at the cenl.(,r of the stoncil then

l ,:)i f(.r)

a(i, 0) = i-_0a"-- (3.11)

I'h(' function f(x) in ,'qualion ::L10 can r('l)resenl any function including (h(' y or z-d('rivalives

NASA/TM--1999-209182

41

of f(x), (fy. f:.). It is a olw-dimensional function that could be applied ill any row of tile st.encil

t.o im.erpolate f(x) anywhere within that row. Let fd:,.Ay(i, j) represent tile derivative °d_+_ f
Oa.a_ttd_

of the function f at grid point (i,j) in figure 3.9. And assume the function being interpolated

i) av f

in equation 3.10 is _. Then for the third order c2ol MESA scheme, the one-dimensional

int.erpolant's spatial coefficients are found to be:

fl°,_lut(O,j) fIl',dvt(1,j)
a(O, O) - + +

2 2

-3 flllAu)(0, j) 3 fIIl,'_Y)(1, j)
a(1,0) = 2It + 2h

_fIl,du)((), j) j'(1,,_t(1,j)
o(_, 0) - +

2 h 2 h

2 f(°'au)(O,j) 2 flIl"tv)(l,j)
a(3.0) - h:_ ha +

h fIl.dvl(O.j) h fI_AsJ_(1,j)

8

fIIAY_(O,j) .f(l'du)(1.j)

4 4

fflAvt(O,j) fl IA_JI(1. j)
+

h '-' h '-'

(3.12)

u'*"+dUI _,1 Notice that the spatial coefficients are relatedlolhederiva-where f(a'"a_J)(i,j) - i,.,,,,_,,jd_ •

tives of the function as:

10&'f(O'!lJ) (3.13)
a(d.r. 0) = da'! O.r a"

The (i,j) coordinate system used to deterlnine grid point local.ions depends upon the parity

of the stencil's (limension in one row. Odd dimensioned stencils (3 × 3,5 × 5) have a grid poin!

in the center of its stencil and the origin of tile (i,i) coordinate system is located in the center

of the stencil. Even dimensioned stencils (2 × 2,4 × 4) do not have a grid point in tile cent.er

and so the (i,j) origin is the closest grid point down and t.o t.he left of the center of the stencil as

shown on the right side of figure 3.!1. In both cases however, tho spatial int.erl_olants coordinate

system's origin is in the cenler of the stencil.

It is iniporlant lhat tile local coordinate syslem be defined such that its origin is al the

cellter o[' the stencil. To see this, consider the following one-dimensional interpolation examlde.

Assume there a,'e four collinear grid points labeled, ill, tl, fr, and frr respectively. And we will

use a third order interI,olant
3

f(a') = E a(i)a'i (3.14)
i=l)

If we detim" the center of l he ,1 poild olle-dinlensional stencil as the origin (the lef! stencil in

NASA/TM-- 1999-209182

42

figure3.8),thenthea(i)coefficientsaredefinedas:

9fl - fll + 9 fr - frr
a(O) = 16 (3.15)

- (27 fl- fll - 27 fr + frr)
a(1) = 24h (3.16)

- (fl - fll + fr - frr)
a(2) = 4h 2 (3.17)

- (-3 fl + fll + 3fr- frr)
0,(3) = 6h a (3.18)

('ompare this to the new coellicients when the origin is on the fl grid point as in the right

stencil of figure 3._, the a(i) coefl'icients then become:

,(0) = fl (3.1t))

- (3fl + 2 .fll - 6fr+ f,'r)
a(l) = 6h (3.20)

-(2fl - fll - fr)
,(2) = 2h'-' (3.21)

- (-3 fl + fll + 3 fr- .frr)
a(3) : 6h _ (3.22)

When either of these formulalions are evaluated al the cenler of the steucil, they produce

the same interpolated solutions. However, the Tensor Produc! lllethod requires that the spatial

coeflicieuts be directly related to lhe aclual data on tile grid. This halq_ens when the center of

the stencil is used as the local coordinate system's origin. For example, tile second derivative of

f(x) evaluated at the midpoint of the stencil with tlw origin at stencil center is:

O_j(o)
Oa"-' - 2a(2) (3.23)

Aml in general,

#f(o)]
o(i) = a.,._- _ (:1.24)

tlowever, wh_,n l he origin is at grid point fl as shown in the righl stencil of figure 3._. the

secoml derivative becomes a linear combinatiou of t,he spatial coeffici('nls:

O'-'f(h/2)

0 ,r -
- 2 .(:2) + :_h .(3) (:I.25)

NASA/TM-- 1999-209182

43

CenteredORI(;IN UncenteredORIGIN

r fll fr frr

Figure3.8:Spatialinterpolantoriginmustbeat centerofstencil

ODD EVEN

j • • • • • •

,- 1 l
• i • •

• • • • •] • • • • • •

I
• • • • •] • • • • • •

Figure 3.9: Slencil Local (;rid Point (!oordinate System (i,j)

And it is not possible, using this formulation, to simply sul)stitute function values with spatial

coefficients a key requirement of the 'lYqlsor Form melhod.

Notice that the variables dy and j are undefined in equation 3.12. Changing varial)le dy

corresponds to creating a new one-dim¢'nsional illt.erpolation function for interpolating _ ini_yaY

the x-direct, ion. Reusing the spatial interpolant coetIicient.s in this manner avoids the need to

use t,ime consuming (;riSebner basis solvers for each flmct ion being inlerpolaled.

ht addition, another advantage of the 3'¢,nsor form of the equations is lhey may I)e put into

a DO loop in FORTRAN. The y-derivative terms may then be int.erl)olated in the x-direction

without recalculating the symbolic form of the spatial coefficients. Since the spatial coetticients

a(i.0) are restrict,ed to the one-dimensional case, they are not nearly as COml)licat.ed as the two

and three-dimensional spatial interpolant coetticients |end to be. This results in sitnple t,o design

FORTRAN code consisting of relatively small equations.

NASA/TM-- 1999-2(t9182

44

Let.s(iimlex,dy,j)denotethespatialcoetticienta(iindex,0)at.rowj whentile functionbeing

interpolatedis ;*_y.tPerformthesimpleI)O loop for ale even dimensioned stencil:
iiyd_ .

Do[
Do[
Do[

s[iindex,dy,j]=a(iindex,O)

,iindex,O,O]
.dy,0, D]

,j,I-(N/2),N/2]:

Figure 3.10: Loop to compute tile S terms in 2D with even stencil dimensions

or for an odd dimensioned slencil:

Do[
I)o[

Do[
s(iindex,dy.j)=a(iindex,0)

,iindex.0,O]

,dy,O,I)]

,j .- Int.eger Pa rt (N/2),lnt ege rPar t (N/2)];

Figure 3.11: Loop to COmlmt,e lhe S terms in 2I) with odd stencil dimensions

and all x-derivatives of fimclion f(x) at the center of the stencil on each row is deter-

mined at the ,s' local, ions as shown ill figure 3.12. The variable s(iindex,dy,j) is equal to

1 i)""d_"+4_.[(O,j]

iitld,,vl U.e""d_ ' 9d_

AI lhis point, we sli[[need the a{id) spalial coetficil'nt.s from equation 3.9 al the cenler of the

stencil {x,y)=(0,0). To gel this information, we will now interpolate the data at. the S locations

1o the $2 location in figure 3.12 using another one-dimensional interpolation.

We now cwate a one-dimensional inlerpolant function in the y-direclion:

O

ft,) =
j=l)

(3.26)

using l lw same i_rocedures as was used to solve the unknown spal.ial coeflicienls in equation 3.10.

The unknow,E spatial coefficients a(0, j) in eqElatiOlE 3.]2(J correspolld to tlEo right most diagonal

starting at the lop and going down and to the right in lhc pyramid 3A. For liE,' c2ol MESA

NASA/TM-- 1999-2(19182

45

EVEN

• S •
f,f,,f:,,,

$2

f, f_,f_..,-

i S •

Figure 3.12: Int,ermediate Derivative Information St,orag0 Locations For c2d2 MESA

scl_eme, the spatial coefficients are defined as:

.[l_'"'°_(i,O) fld'"'°)(i, 1) +
a(O,O) -- 2 + " 2

-:l fI_"_)(i,O) 3 fld"°l(i, 1)
a(0, 1) = +

2 h 2h

fi,.r.n)(i.O) flaJ..l)(i, 1)
a(0, 2) - +

2 h 2 h

2.[l_"'°t(i,O) 2 fc&"°)(i, 1)
.(0.3) - h :_ h3 +

h fld_,ll(i,O) h fl'_"'ll(i, 1)

8 8

.fl'_", n)(i, 0) fld"lt(i, 1)

,4 4

fld:.l)(i,O) fla.",ll(i. 1)
+"

h"-' b 2

(3.27)

These coefficients correspond to the y-derivat, ives of the function f:

1 0 a'+j ' ,t, .,..f(,r, .0)

a(O,jil_&x) = jindex[ord"'q ji''de'''..
(3.2S)

Not, ice that the variables (Ix and i are undefined and provide the same functiol_s and benefits

in the y-direction as discussed for variables dy and j in t.he x-direcl.ion. However, the flmct ions on

the right hand side of these equal.ions are already known and are substit, ut,ed with s(iind(a', d#, j)

terms fl'om the first set of DO loops the functions f and s are relaled by:

fl ii,, a<,..ay)(i, j) = ._'(iilMe.r, d:/, j)(iinde .r!) (3.29)

Substitvtinlg wit h .s(iind(.r. d!l, j) instead of with s(iim/¢ a', dy, j)(iinde.r?) has the effect of di-

viding the e,.lua'lions 3.27 by iimh,c?. This process act ually ('irculnvenls division roundoff errors

which Call seriously degrmh' lhe very high accuracy MESA schelnes.

NASA/TM--1999-209182

46

In twodimensions,thevariablei isconstantsinceonlytile centeroftilestencilneedsderiva-

live informationandthepreviousDOloopsput the (f,f_., J'_.) derivatiw, infornlation of the

functions f = f, fv, fur ill the center column at the S locations of figure 3.12.

Now it is possible to solve for all tile spatial coefficients in the pyramid using another simple

set. of DO loops that. uses the s(iindex,dy,j) infornlation. Tile substitution into equation 3.27

is done ill Mat.henlatica. Substituting one symbol for another is all important capability of

Mat.henlatica and ill this case significantly simplifies the solution of the two-dimensional spatial

coefficients, a(i,j), ill equation3.9.

This final DO loop uses the one-dimeusioual interpolation ill the y-direction to interpolate

all lhe required spatial coeHicielll,s at. the cellter o[' tile stencil.

Do[
Do[

s2(iindex,i index)=a(0,jimlex) with/I d_,-.,.._,_,-,_I(i, j) substituted with s(derx.dery,i)
,jindex,O,O]

,iindex.O.O]:

Figure 3.13: Loop to COmln|t,, the $2 l.erms in 2D

The s2(iindex,iindex) terms correspond to t,lw a(iindex,jimtex) t.erms in equation 3.9. Notice

l.hal the, probleln of finding tile spatial coe[l']cielltS has been reduced to two loops in which

one-dimensional interpolations are performed in first the x-direction, aml then the y-direction.

3.1.5 The Interpolation Problem in 3D

The 3D interpolation prol)lem is analogous to that described ill sect.ion 3.1.1. The osculating

polynomial is defined on an N × A x N grid region with data at each grid point thai conlain

tim following scalar data up to order 3D a! each grid poinl:

Oi+J+# f

Oa,:O!/j 0:_, Vi, j. k • (i. j. k = 0.1 D). (3.30)

The h_rm of the local interpolating function detined over each stencil domain will be:

/t.,...,,.:/: Z Z; ,,t;. h./.,.*:/:"
i } k

NASA/TM--1999-2(19182

47

ii0
iii
112

)3 113 O:

210 120

Figure 3.1,1: Spatial (!oeflicieut M,eumo,ic for 3D with N = ;2 and O : 1

The coefficients a(i,j, k) are deternlined by solving the linear sym,em formed by evaluating

equat, ion 3.31 at each grid point i. the stencil for all data elements.

The representation of the spatial coefficients i. three dimensions can be drawn similarly t,o

the pyramid in figure 3.4 as a cube in figure 3.14. Notice the t,op plane of the cube corresponds

to the two-dimensional spatial coefficients for the c2ol MESA scheme, if all the cross-derivative

terms are included. It is still l)OSsible to solve these spatial coelIicients in sub-groupings as was

done in the two-dimensional case. The t,op plane of the cube in figure 3.14 of coefficients is

solved in line-groups first,, then the next plane's line-groups, and so forth.

The three-dimensional spatial interl)olation problem requires the Tensor Form method since

the Genera] method is slow, complicated, and results in equations that are too lengthy for

compilation.

3.1.6 Tensor Form Method in 3D

The Tensor Form method provides an efficient procedure for solving the 3D spatial inlerpolant

problem, and produces equations simple e,ough for today's FORTRA NgO compilers. Tit(" _]'ellsor

Form requires stencil data to be colli.ear in the x and y-directions though nonuniform spacing

is permitted. Since o.ly(:artesian grids are used in this work, the Tensor Form met hod is ideal.

For I)rol)lems il_vohing COlnl)lex geonlelry however, it is necessary to r_wel't I)a('k lo the (;eneral

NASA/TM-- 1999-209182

'18

method and solve ill line-groups. However, it appears it. may bp possible to s3qnbolically solw,

all possible cases in a preprocessing step. If this occurs, then a long wait tbr its (;eneral melhod

solution may be acceptabh" since it will need t.o be conlpul.ed only once. In addition, recent

developments in parallel Mathematica, parallel Gr6ebner basis solvers, and parallel computers

hold the promise of quickly solving the three-dimensional geomet.ry cases wilh the (;eneral

met, hod.

The Tensor Form method in three dimensions uses l.hree sets of loops, one per dimension.

The computational savings arises from reusing lhe data from previous loops and interpolating

only in one-dimension al. a l.ime. The savings are significant ill three-dimensions since a large

amount of data is reused and l.he three-dimensional spal.ial coeflicienls, a(i,j,k), ill equation 3.31

are solved ill otle-dimellsiona] slices.

As in the two-dimensional case, define a one-dimensional interpolating funcl.iOll of order O

as :

O

f(a') = E a(i, 0,0)xi (3.32)
i=(l

with its coordinale system's origin always al |he cenler of the stencil.

In three dimensional proMems, the order O is the number of data elements along one row

of the stencil cube in the x-direc(ion tha! are nol a y-derivative or z-derivative, minus one. A

2 × 2 × 2 stencil has 2 grid points in a row and f, f.,., f_.. are the data elemenls al each grid point

for a c2o2 MESA scheme that contain no 3 or z-derivatives. The two and three dimensional

problelns reduce 1o lhe same simph, set of equations in one-dimension and it. is because of this

lhaI llw Tensor Form met.hod is so successful in 3D (ie. The equal.ion comph,xity does not

change, only the nulntmr of loops).

For the c2ol third order MESA scheme in three-dimensions, the spat.ial coetlicienls are solw'd

using (,rgelmer basis" aml Buchberger's algorillml in Mathematica. They are found Io be:

f(tl.a'a,'l:t(O.j,k) j'lllAv,a:)(l,j,k) h fIl,'*'J,&l(O,j.k) h f(1,a'J,_:)(l,j,k)
= + + -,(0, 0. U)

2 2

--:{ ftl_,clY,d:)((I,j,k) 3 fI°,'Zv,d:l(1,j,k)
o(1,0, U) = + -

2 h 2 h

-fl l,av,a:)(O, j, k) /'(l.,*:/,d:i(1,j.k)
.(2,0,0) = +'

2h 2t,,

2.fl','z'J,'i_)(O,j,k) 2.1"I'a*J,,t_l(1.j,k)
a(3,0.0) = - +

h:_ h:_

f(1,dy,d.r I(0, j. k) .f(1 a_j.a: i(1. j. k)

4 4

j'I 1.&,a': 1(0, j, k)

[I 2 112

(a.:l:])

./-_l.,z_j._: i(1, j./,,)
+

NASA/TM-- 1999-209182

49

This is essentially tile same form as ill tile two-dimensional case previously shown.

Tile local right-handed (i,j,k) coordinate system used is analogous to the (i,j) coordinate

system used ill 2D ill figure 3.9 and represents grid point locat, ions. Odd stencils have their

(i,j,k) origin at the center of the stencil aml even st.encils have an (i,j,k) origin at the closest

grid point t,o the center of the stencil in the direct.ion of descending i,j, and k coordinates. Tho

spatial interpolants origin is however, always at. the center of the stencil whether it has an odd

or even dimension.

The variables dy,dz,j.aud k are undefined in equation 3.33. Assigning values t.o these is equiv-

alent to creating an interpolation flmct.ion in the x-direction across the stencil for illterpolating

the fimction °d"+_:----------Lalong the line iut.ersected By tile j and k planes.
O qd_lUzct:

Ill a st.ep analogous to the Tensor Form method in 2D, let s(iindex.dy.dz,i,k) denote the spat ial

coefficient, a(iimlex,0,0) in equation 3.32 at lhe cenler of the row formed from the intersection

of plam_ j and plane k when the fimction being int.erpolated is °e"+e:_
Oq 't uO: a : •

Perform the following set of loops to assign all the s variables for an even dimensioned stencil:

Do[Do[Do[Do[Do[
s(iindex,dy.dz,j.k)=a(iindex.O.O)

,iindex.O.O 1

,dy,O,D]

,dz,O,D]

,j,I-(N/2),N/2]

.k,l-(N/'2),._/'2]:

Figure 3.15: Loop to compute the S terms in 3D with even dim_nsioned stencils

And for a,n odd dimensioned stencil use:

Do[I)o[Do[I)o[l)o[

s[iindex,dy.dz,i.k]=a(iindex.0,0)

.iindex,0.O]

,dy,O,D]

,dz,O. I)]

,j ,- hm-ger Par t.[N/2] .hm,g,,r Par t [N/2]];
.k.4,,teg,_rP.rt[_/2].hlteg*'rP_rt[N/:2]]:

NASA/TM-- 1999-209182

5O

After tha! first set of loops, all tile interpolations in tile x-direction are completed. Now,

using that information (localion S in figure 3.20), we will inlerpolate the data at S in tile j-

direction shown in tile figure. Again, define a one-dimensional interpolatiug function of order O

in the y direction as:
O

f(9) = Za(0 J 0)j (3.34)
j=O

This system can be solved using Grgebner basis again or since it. will have tile same form as

the x-direction interpolat.or, it. is possible to symbolically replace the x-direction terms into y-

direction terms using a simple shift of indices. This symbolic replacement can be easily' performed

in Mathemalica. Again. t.he equations are kept siml)h, since t.hey are one-dimensional: This

advantage is siglfifican! in 31) since, it permits fasl creation and ('ompilatio,l of lhe FOHTI{AN

code,

For the c2ol third order MESA scheme in 3D, the spatial coetlicielll.s for the y-direction

interpolant arc':

fld_""d:_(i.O,k) ftd"'°'d:)(i, l,k) hffd*ad:_(i,O,k)
a(O, 0,0) = + + -

2 2

--Yfld_"°d:_(i,O.k) 3f(d"°'d-)(i, 1,k) fld'_'td:_(i,O,l,')
.(0, 1,0) = + -

2 h 2 h 4

--fId'"ld:_(i,O,k) ['Id"ld:l(i, 1,k)
.(0,2.0) = + "

2h 2h

2fld"°d:l(i,O.k) 2J'ldx'_'d:)(i, 1,k) .f(_"'l'd:l(i,O,k)
a(O, 3, O) = - +

t_:_ h :_ h '-'

h f(d,,.,_ ,d:)(i, 1, k

8

ffd_'ld:l(i, l,k)
m

4

(3.35)

fId"ld:l(i, 1, k)
+

h'-'

Since lhese correspond to a one-dimensional imerpolant, they are again essenlially lhe same

form as the tirsl sel of spa/.ial coetticients used in the i-direction of figure 3.20.

Notice that the variables dx.dz.i, and k are umlefined in equation 3.35. Assigning values to

these is equivalent to creating an int.erpolation function in the y-direction across the stencil for

intert_olatillg lhe fullctioll j.,-+e:j, along the lino formed bv l[le intersection of lhc, i-l)laue and
• U,r da" ij: d: •

k-plane. However, the functions, f(d.r.dy,d:)(i, j, k) on the righl-hand side of these equations arc'

ah'eady det.ermined from the tirst loop and stored at the S locations of figure 3.20 .

They are defined by:

ft d.,. d,j.d: I(i, j. k) = .s(d,r, dy, d:, j. k)(d.r !)(dy!) (3.:_(i)

NASA/TM-- 1999-209182

51

Substitutings(dx,dy,dz,j,k)for fd.r,dy,d: (i,j, k) has the effect of dividing these equal, ions by

(dx!)(dy!).

Let s2(iilldex,jindex,dz,k) denot,e the spatial coefficient a(iindex,jindex,0) at, the center of

plane k when the function being interpolaled is_ 0;,;o:e:ae*+d"------Z-f"along the line in tile j-direction of

figure 3.20. Perfornl the following loops to compute the spatial coefficients at location S2 on

each k plane for all even dilnensioned stencil:

Do[Do E Do[Do[
s2(iindexjiudex,dz,k)=a(0,jindex,0)

s(derx,dery.derz,j,k)

.iindex,0,O]

,jindex,O,O]

,dz,0,degree]

,k,I-(N/2),N/_];

with f(der*'der'a'de":)(i,j._') substituted by

Figure 3.17: Loop t,o comlmte $2 terms ill 31) for all even dimensioned stencil

Or perform this set of loops for all odd dilneusioned stencil:

Do[Do[Do[Do[
s2(iindex,j index,dz, k)=a(0.j index,0) wit.h

s(derx,dery,derz,j,k)

,iindex,0,O]

,jindex,0,O]

,dz,0.degree]

,k.-hlt egerPart [N/U] ,I nt,eger Part,[N/2]] :

.1"lg''''',d_'''a'd_': _(i. j, k) substitllted by

Figure 3.18: Loop to COlll[mt.e $2 terms ill 3I) for all odd dinlensioned stencil

At this point, the spatial coelticients a(i.j,0) for the full 31) spatial interpolant 3.31 are

known at tile center of each plane k (indicated by $2 in figure :{.20) and will be used ill one

final set of loops to find all a(i,j,k) at l he center of the st euci[. This is accolnplished by usiug a

one-dimensional interl)olant of order O in tile z-direction.

O

f(_-) = _ a(O, O, t')_-*' (3.37)
k=-II

This Call be solved using Gr6ebner basis or symbolic modification of tile coetticie,ltS from

the x-direction inlerpolanl's coetticield,S using Mat, helnatica. For the c2ol third order MESA

scllmll_' in 3I), tile spatial coefficients ar<

NASA/TM-- 1999-209182

52

a(O,O,O) = fld"'d_'°)(i" ,j,O) + fld_"du'_))(i,j, 1) + h fldx'du'l)(i, j,O) _ hf d_-dy,ll(i,j ' 1)
2 2 8 8

--3 fld_"dY'°)(i, j, O) + _ _a(0,0, 1) = 3f(d_"dv'O)(i,j, 1) ffdx'du'al(i,j,O) fl d_"du'l l(i, j, 1)
2 h 2 h 4 4

--fld_"dU'll(i,j,O) fId_"du'l)(i,j, 1)
a(O,O,2) = 2h + 2h (3.38)

, f(dx,d_,ll(i,j,O) ftd_",du,ll(i,j,l)a(O,O,3) = 2 ftd'_'du°)(i,j,O) _ 2 ftd""O'°l(i,j, 1) + +
h 3 Ii 3 h 2 h 2

The variables dx,dy,i, and j are undefined. Assigning values to these is equivalent to creat, ing

an interpolation fimction in the z-direction across the stencil for interpolating the funclion

0 a'+au [
tlowever, lhe functions, f(d_.,,YU.d:)(i,j. k) on the right-hand side of these equations are

already delermined in the previous loop and stored al the $2 locations of figure 3.2(}.

They are defined to be:

}.ld.r,dy,d: _(i, j, k) = s2(dx, dg, dz, k)(d,r!dy!dz!) (3.39)

Sul_stituling s2(dx, dy, dz, k) for f (d'r'dg'd:)(i, j, k) in equalions 3.3,."; has the effec! of dividing

them by (da'!dg!dz!), which is ,he required form for the spatial coefficients in equalion 3.31.

Lel s:l(iindex.jindex,kindex) denole the spatial cot'lficien! a(iindex,jindex,kilMex) at lhe cen-

¢_#.+a_, f
ler of llw slencil when the function being interpolated in the k-direction is _.

Perform lhe following loops Io comput(_all the lhree-dilnensional spatial co,qticienls al loca-

lion $3, lhe C(qller of tlw st(moil,

i)o[I)o[I)o[

s3[iindex,iindex,kindex]=a(O,O,kindex) wilh fld,,.,,.,_t_,._j d,,-: >(i, j, k) substituted by
s2(derx,dery,derz,k)

,kimlex,O,()]

,jimlex.0.O]

,iindex,0.O]:

Figure 3.19: Loop to compute $3 terms in 3D

Silnply sul,stitute .<I(i.j.k) fl)r a(i,j, k) in equation 3.31 and the 3D inlerF, olatic, n f, roMem

is conll)loted.

NASA/TM-- 1999-209182

53

/
Figure 3.20: S,S:L and $3 St,orage Locations For 3D 2 × 2 × 2 stencil

3.2 Temporal Evolution

With tile spatial coetficients fl'om equations 3.,q and 3.31 known, tile second slep of the MESA

schemes is the development of a local propagator that evolves the solulion t,o the next time step.

For the consl, atlt, coefticient case of the linearized guler equations, il, is possibh" to dew'lop a

propagator that propagates t,he waw_s exactly along the characteristic surfaces originating fl'om

tile st,encil. Three equivalent procedures for iml_lementing this locally defined exact l_ropagator

are discussed. Tile Finite Difference Form is the the most expensive to create and compile but

is most efficient to execute in some cases. Tile ,qpatia] (:oet:ficient Fornl is easier to create and

compile but is the least efficient t,o c'xecute. The liecursiv_ _ Tensor Form is the silnl)lesl to create,

compile and tile most efficient t,o execute on small high resolution stencils in _D and most cases

in 3D. A cosl comparison of tile methods is made later and shown in lables 3.1 and 3.2,

3.2.1 Finite Difference Form Method in 2D

The Finite Difference f()rm expresses each evolution variable as a linear combination of all

the data on the stencil from a previous time step. 1I results in a simple singh'-step explicit

finite difference scheme. Each data elelllellt oll l,he stencil has all associated coe[licient for each

variable tha!'s ew)lved. This is achieved by using Mathematica to sylnbolically simpli_" the exact

propagator form from a linear combination of lhe spal,ial coefticients 1o a linear combination

of the stencil data. For examph _, in equation 2.'27j the exacl propagator form for tile MESA

NASA/TM-- 1999-209182

54

c3o0 2D case is shown as a linear combination of the spatial coefficients. Tile sl)atial coefficient

indicated by v.,., al the elld of t.[le first equation 2.2.3 for t;'_'f 1 is defined ill terms of data elelnenl.s

on the stencil using the techniques of section 3.1 as:

t!22 z i-l,j-I --'2 t i- l,j+O "}- _i-l,j+l

I +4ti+oj+o--2ti+o,j+l +

,I1 ,?1

/:_l+l,j_l -- 2 ti+l,j_l_ 0 _- Ii+l,j+l)/(4 tl 4)

(3.40)

Each of the spatial coefficients is expanded similarly resulting in a very large evolution equation

in terms of stencil data elements. This process is too expensive in 3I). While it is l_ossible to use

lifts process to create 2D codes, the large set of equations (one at each data element in the slencil

times 1he number of data elements a! a grid point) are difficult to create and compile. If the

convection field is constant, lhen the set of equations reduce to a set of constants which can be

compiled quickly, bm this st,ill puts an enormous strain on Mathematica and may take weeks t,o

soh'e low order 3D problenls. A cost analysis (see table 3.1) shows the explicit Finite-Difference

Form is not the most elticienl to execut.(, in the cases of interest anyway.

3.2.2 Spatial-Telnporal Coefficient Form Method in 2D

'Tlw NpaliaI-Temporal (:o,qlicient Form uses the exacl, l)ropagalor as a linear combinalioll of l.lw

spalial coetticienls. The (;eneral I:orlnofllw exact h)cal propagator for the primiliv('variables

will b,':

2(0) O min(O,2(O)-j-k)

= E E Z
k j i

2(O1 O n,iIJ(O,Z(Ol--j--k)

"(*,..') = E E Z ,.,,(:.j.h.).,.:,/,,
t" j i

2101 O mmlO.2(Ol-j-k)

"('..,') = E E E
t" j i

(3.11)

where cp(i, j, k), e,(i, j, k), cu(i, j, k) are arrays of spatial-teml)oral coe[ficiems. The coetti-

cients with k=0, (Cl,(i,j, 0), cu(i,j, 0). ce(i,j, 0)) are defined using the lechniques of section 3.1

and l'_'l_l'('Seld lhc spatial coelIicients of each I),'imitive variahh _.

NASA/TM-- 1999-209182

55

Tile conditions for an exact, propagator on these equations is:

p(°,°,l)(x,y,t) + myl;?'l'°)(x,,q,t)+ t'((l'l")(x,.q,t)+ mxl_(l'c:l'_)l(x,,q,t)+ u(l°'c_l(a ",,q, i) = ()

uIo,o,1)(x,y,l)+myoIO,l.O)(x,q,l)+p(1.°.°t(x,y.l)Wn_a, uIl,°.°)(r,!l,t). = 0

v(°.°,l)(a,,y,l) +p(°,l'°l(x,y,l) + myt,(°'l(_l(x,y,l) + m.r e(l'°'°)(a',y,l) = O

(3.42)

where mx and my is the convection velocity in the x and y directions respectively.

Solving these equations for all values of x, 5', and t. results in exl>ressing the spatial-t.emtmral

coefficients as a linear combination of the purely spatial coefficients. For exanlple, the c2ol

MESA schellle ill 2D with all exact, local propagator requires the following relal.ionshil> between

the spat ial-telnl)oral coefficient aml the purely spatial coetticient.s:

cp(1,0,5) = (-3 my-gmx'-'m.q-3mY :_-3nlx'-'my 3) cp(3,3,0)+

(-6 ma • m.q - 6 m.v m,q 3) cu(3, 3, 0) + (3.4:_)

(-_-3 ,,la'_- 3 i,lU_- '),ll.r'-' m!,,'-') el,(3, 3.0)

Letting (h ha' bg) be the grid spacing and (/am = _'¢= = _-7) be lhe (TL lime-step fraction,

and using the relationship in equation 3A3, and expressing the olher spatial-tenq_oral coefficients

as a linear combination of the purely spatial coefficients, produces the following MESA algorithnl

for the pressure variable l,']af I =:

cp(O, O, 0) -

h lanl mycp(O, 1,0) +

(h'-' lain'-' + h'-' lain'-' m.V'-) cl,(O. 2, O) +

(--2_]ta lain a llql -- h 3 la_lt :_ Itl!] a) ('P([J, :_, O) -

h lain mx cp(l, O, O) +

h'-' lain'-' m,v my cp(1.1. O) +

(- (Jl _/,,ii 3 ,,,x) -/i :_/,,ill _ ,,,x ,,i,/-') el,(l, 2, 0) +

(3 tl 4 laIH 4 ??t;r Itl!l q- /1 "I I(ttn 4 //t.l'lll.q 3) el, (1,2_,0) q-

(h'-' lain'-' + h'-' lain'-' m.r") c1,(2.0, 0) +

NASA/TM-- 1999-209182

56

(- (h 3 lain 3 my) - h3 lain 3 mx _ m!/) cp(2, i, O) +

+ h 4 lallf _ ma'- + I/t lan(_mtl _ + t/_ I(tl7_4 _l_x" _)_y'-' cp(2, 2, O) +

(-- (h_ I.m r' m_/) - "3b_ Iom_ rex-" m_ - h_ lain _ my "_- h _ lain 5 ma: _ my 3) cp(2, 3, O) +

(--3 h 3 tam 3 7_t.r - k 3 lain 3 n_a'3) cp(3, O, O) +

(3 k 4 laT_ 4 _)t.v 11L1.t+ h 4 lain 4 tn a'3 m q) cp(3, 1, D) +

(- (h_ I.m _ rex) - h_ Iota _ mx 3 - 3 h5 tam _ mx m.q 2 - h "_lc-. '_ mx z m.q 2) cp(3, '2, O) +

(3 h" latt{; mx my + 3 h'; lain _;mx 3 my + 3 h '_ lain c;mx m.q 3 + h '_lain '_;m.e 3 nt.q3) cp(3,3. O) -

hlam cu(1.O,O)+

h'-' la./-' my cu(1, 1, O) +

(-(h31am3) h31am3'nq'-') cu(l'2"D)+3

(114lain4 in!! + k a lain 4 7_%q3) ('it(l, :_. [.)) +

"2h'-' tan(-' m_' cu(2, O, O) -

2 k 3/am 3 m.r my

(2h41am_m'v)
+ 2 h"t lain 4 mx rag'-'

3

(-2 b_/am r'mx m.q - :2h"_l.m r' mz m q3)

(-- (h 3 h1_ 3) - 3 h3 laln 3 ma !2

cu('2, 1, O) +

cu(2, 2, O) +

cu(2, 3, O) +

) c'_(3, O, O) +

(tl 4 lain 4 my + 3 h4 lain 4 m.t'' In,q) cu(3, 1. O) +

(- -._)(h 5 lain") h 5 lanl :>rex'-' h 5 lain" re.q- - 3 h" Iota 5 m.r'-' m!l'-' r'u(3, 2, O) +
5

(3h';lam";n,.q +3h,_; ,; ., -. .)
- lain ma'- my + It'" lain" m q3 + 3 t1" lan/; real-' my 3 ('u(3, 3, O) -
5

h law co(O, 1,0) +

"2h'-' la./-' m,q cv(O, "2,O) +

(- (h 'JIc_,, 3) - 3 I,3/c_m :3raft-') (.v(O. :l, O) +

I/2 lain 2 mx cv(l, 1,0)-

2b 3/am 3ms'nl_c'v(1 2.0)+

(b 4 lanl 4 ma" + 3 h 4 lan14 n,a" tltq'-') cc(1,3. O) +

(-(h:_lam:_) h:_lam:3'"'r'-') c''(2"l'O)+:I

N ASA/TM--1999-209182

57

Notice /hat the number of spatial co_tficiezlts used in this]im_ar combination is equal 1o

the number of data elements in the stencil. Each sl)at.ial coefficient, has an associated equation

on its left hand side just as occurs in the finite difference form, except only one coeflicien!

is assigned here regardless of the mmlber of evolving variables. Let. ppkl)(i,j),ppku(i..i), and

ppkv(i,j) respectively represent tho]eft. hand side equation of the terms involving cp(i.j,O),

cu(i,j, 0), and cv(i,j, 0) in equation 3.44.

It. is possible t.o then express the pressure' variable's MESA scheme as:

0 0

t,'],+l = ZZ(l,pkp(i,j)cp(i,j,O)+l,pku(i,j)cu(i,j,O)+ppkv(i,j)cv(i,j,O)) (3.,15)

i=0 j=()

NASA/TM-- 1999-209182

58

A helpfulmneumonicis thefollowingmatrixform:

pph'p(O, O) * cp(O, O, O)

t,pkp(1, O) * cp(1, O, O)

pp]cp(2, 0) * cp(2, O, 0)

pp"p(3. O) * cp(3, O. O)

ppt'p(O, 1) * cp(O, 1, O)

ppkp(1.1) * cp(1, 1. O)

ppkp(2, 1) * cp(2, 1, ())

ppkp(3, 1) * cp(3, 1, 0)

ppkp(O, 2) * ct'(O, 2, O)

ppkp(1, 2) * cp(1,2, O)

pp[_'p(2.2) * cp(2, 2, 0)

pplep(3, 2) * cp(3, 2. O)

t,ph'p(O, 3) * cp(O, 3, O)

lq_kp(1, 3) * cp(1, :3, O)

pplcp(2, 3) * cp(2, 3. O)

ppl,'p(3, 3) * cp(3, 3, O)

ppt'u(O, O) * cu(O, O, O)

pph'u(l, O) * cu(1, O, O)

pl*h'u(2, O) * cu(2, O, O)

pl,h'u(3, O) * c.(3, O, O)

ppku(O, 1) • cu(O. 1, O)

ppleu(1, 1) • cu(1,1, O)

ppku('2, 1) * cu(2, 1, O)

ppku(3. 1)* cu(3, 1.0)

l,l,ku(O, 2) • cu(O, 2, O)

ppt!u(1,2), cu(l, 2, O)

pplcu(2, 2) • cu(2, 2, O)

pp]cu(3, 2) • cu(3, 2, O)

ppku(O. 3) • cu(O, 3, O)

ppku(1,:3), cu(1,3, O)

l)l)_!u('2, 3) • (.u(2, 3, O)

pl&U(3, 3) • cu(3, 3. O)

tq,_'t,(O, O) • c_,(O, O, O)

lq,]ct,(1, O), er(1, O, O)

ppk_,(2. O) * cc(2, O, O)

Iq,lcc(3, 0) * ct'(3, 0, 0)

tq&t'(O, 1) * cv(O, 1. O)

ppk r(l, 1)* ce(l, 1, O)

ppke(2, 1)* ct,(2, 1, O)

ppkc(3.1) * cc(3, 1.0)

ppke(O, 2) * c_,(O, 2, O)

ppt'_,(l, 2) * cv(1.2.0)

pp"t,('2, "2) * or('2, 2, O)

pp_(rr(3, 2) * c_,(3, 2, O)

tqJk_,(O. 3) * ct,(O, 3. O)

ppke(1,3)* c_,(1,3. O)

ppt,'v(2, :3) * ct,(2, 3, O)

lqJkc(3, :3) * c_,(3.3, O)

(3.46)

in which to produce the pressure at the next time step, each of these elements in the malrix

form must be evaluated. A similar matrix mneumonic is formed for the u and r velocity variables.

Irnlike the explicit tinite-difference form of these equations, evolving the derivalive of lhe

pressure p_., will actually require fewer of lhese matrix elements. The pp_'p(i.j), pph'u(i.j).

pp_'r(i, j) coefficients do not depend upon the dimension variables .r or ,q and do not change

therefore when lh(' derivative of ('qual ion 3.45 with reslW('l 1o x or y is laken. And, the cp(i. j. 0),

cu(i,j, 0), cr(i,j, 0) can simply be shifted in lhe matrix t)('cause of relation 2.2. This is seen by

taking the x-derivative of p:

Opt' +t

O.r

0 0

- E Z (pp_'I'(i, j)cp(i+l, j, O)+ppku(i, j)cu(i+ 1. j, (J)+pp_'t,(i. j)ec(i+ 1, j, 0)) (3.47)

i=I} j----I}

NASA/TM-- 1999-209182

59

The new mnemnonic matrix for P:r becolnes:

ppkp(O,O)*cp(1,O,O) ppkp(O, 1)*cp(1,1,O)

l)pk'p(1, O) * cp(2, O, 1)) ppkp(1, 1) * cp(2, 1. O)

ppl,'p(2, O) * cp(3, O, O) ppkp(2, 1) * cp(3, 1,0)

lq)lep(3, O) * 0 tq)L'p(3, 1) * 0

lqd,'p(O, 2) * cp(l , 2, O)

lq,kt)(1, 2) * cp(2, "2,O)

t)l)l_t) (2, 2) * cp(3, "2, 0)

PP_!t*(:3, 2) * 0

l,pkp(O, 3) * cp(1,3, O)

pp"p(1.3) * cp(2, 3, 0)

ppkp(2, 3) * cp(3, 3, 0)

ppkp(3, :3) * ()

pp]_u(O,O)*cu(],O,O) pp_'u(O,l)*cu(],],O) ppJ_'u(0,"2)*cu(],2,0)

ppk_t(l, 0) * cu(2, 0, 0) ppk'u(l, 1) * cu(2.1, O) ppku(1, "2) * ct*(2, 2, 0)

pl)h'u('2, 0) * cu(3, U, 0) ppt_'u(.2, i) * cu(3, 1,0) ppktt('2, 2) * cu(3, :2.0)

l)p*'u(3, O) * 0 lq)ku(3, 1) * 0 tq)k'u(3.2) * 0

ppku(O, 3) * cull. 3.0)

l)t)_'u(l, 3) * cu(2, 3, 0)

pp"u(2.3)* cu(3, 3.0)

ppl,'u(3, 3) * 0

ppkv(O,O)*cv(l.O,O) t,pkv(O. 1)*c'v(l,l.O) pl)_:v(O,.2)*cv(l.2,0)

t_t*kv(1.O)*cv(2,0,O) pp{'v(l,1)*cv(2.1,O) ppa'v(l.2)*cv(2,2.())

ptd,'u(2,0)*c_,(3, O,O) ppl,'v(2.1)*c,,(3,1.O) lqd,'H"2.:2)*cr(3.:2,0)

pt)h_t'(3, O) * 0 lq*_'v(3, l) * 0 tq)_'r(3, 2) * 0

ppk_,(O, 3) * cv(1,3, 0)

pt,kH [. ;3) * oH"2, 3, 0)

lq)kv(:2, 3) * or(3.3. O)

pl)_!r(3.3) * O

(34_)

The zero terlns occur since for Lhe c2ol MESA s('heme the higher order derivatives are zero

again using l]le relation 2.2.

cp(i > 3,j > 3,0) = 0

c.(i > 3,j > 3,0) = 0

('*,(i > 3,j > 3,0)= 0

(3.49)

In general, t,h_" higher order derivative evolution variables require less work

NASA/TM-- 1999-209182

6O

The shifting process is efficiently implemented in the loop shown in figure 3.21 that evolves

all the variables:

Do[Do[

psum=0;

IlSlllll:0;

','Stllll _0:

Do[

Do[
u,rac=((
pStllll z

pSlllll

pStllll _---

USUlII =

USUlII =

usunl =

vsun] _-_

Vs/inl

VSlllll =

.iindex.0,O-dx]

imdex,0,O-dy];
_+1 --)S

Pd.,',dg --[' II11_

":;.r.+ 1/9 = IIS t' Ill ;

"i;j.+ If9 = VSUlll :

,dx,0,I)]:

,dy,O,D]:

iiudex+dx)!*(jindex+dy)!)/((iindex!)*(,jindex!)):

psum+(mfac*ppkp(iindex,jindex) * cp(iindex+dx,jindex+dy,0))
psum+(mfac*ppku(iindex,jindex)

psum+(nffac*ppkv(iindex,lindex)

usum+(mfac*uukp(iindex,jindex)

usum+(mfac*uuku(iindex,jindex)

usum+(mfac*uukv(iindex,jindex)

vsum+(mfac*w, kp(iindex,jindex)
vsum÷(mfac*vvku(iindex,jiudex)

vsum+(mfac*vvkv(iindex,jindex)

* cu (iindex+dx,j index+dy,0))
* cv(iindex+dx,jindex+dy.0))

* cp(iindex+dx dindex+dy,0))

* cu(iindex+dx.jindex+dy,0))

* cv(iindex+dx,jindex+dy,0))

* cp(iindex+dx,j index+dy,0))

* cu(iindex+dx,iindex+dy.0))

* cv(iindex+dx.jindex+dy,0))

Figure 3.21' E'volving all variables using the shifted data. 2D case

The faclorial is introduced for higher order derivatives and simply multiplies each element

of the mneumonic matrix and is a consequence of equation 2.2. Also, nolice thal the inner loop

size' ¢h'cr<_ses as dx and dy are increased. This corresponds t.o removing a column or multiph,

rows from ma!rix 3.46 for each derivat.iw, of p. (?omparo this t.o the Finite Dit-l'_'rence met.hod in

which the mmfl_er of elements in the nlatrix remains the same for successive derivatiw_s. Also,

the pph'p(i, j), pt*h'u(i, j), pp_'v(i, j) left hand side equations only hoed to Iw computed for tile

prinfitive variables aml are reused for subsequent derivatives oflhe primitive variables: While

lids significamly reduces lhe nuntl)er o['equatiolls required to be compiled by a faclor of 3(I)+ 1)'-'

compared to lhe Finil.e Difference method. This is still t,oo many equat.ions and takes too long to

create and compile life FOI{TI{AN code for high accuracy 2D and all 31) schemes. Despil,e l[le

t'ew_'r sets ()f equations, th.¢"Spalial-'lOmporal Form is less efficient because" il uevds lo r_'COllll)tlle

lhe spatial coefficients at every stencil.

NASA/TM--1999-209182

61

3.2.3 Recursive Tensor Form Method in 2D

Tile Recursive Tensor form method elin_inates most of the complexity of creating and coml)iling

the FORTRAN code since only the one-dinmnsional equations created in the 2D or 3D spatial

interpolation Tensor Forln method are used. This is accomplished by developing a recursive

form of the time advance that can be expressed in a simple loop.

The General Form of the exact local propagator in equation 3.41 has coefficients defined

similarly to the spatial coefficients of equation 2.2, excepl the time dimension is added:

cp(i. j, I:)

cu(i,j,k)

c,(i, j. k)

1 (_i+j+klJ

= i!j!k! OxiO.qJOt _

1 _)i+j +k tl

= (:_..50)
i!j!k! OxiO,qJOt _"

l 0 iTjTk t'

i!j!i'! t)._'iO!4j Ot k

Now substitute i+a,j+h,and k+c ff)r i,j, and k, resl)octively, into these equations 3.50. Since

p,u. and v are analytic flmctions the mixed derivalives may I)e permuted and therefore, these

equat, ions after the subslilution may be writton as:

cp(i + a.j + b,k + c)

eu(i + a,j + b,k + c)

cv(i +a,j+ b,k + c)

[i*.,"_y _t _]= ii + a)!(j + b)!(k + c)! O.,'"Oj'Ot"

(.,+,+_.)

(,)0"+"+:-_,_:= (i + ,)_(j + t,)_(a.+ e.)_ ,.,.oo,,,e_,:

(1):)'_+"+:_,.,.,e,,:,i,t',}= (i + a)!(j + b)!(k + c)! O.t:a()!lt'i)t "

(3.51)

And lhen use lhe basic delinifioll 3.50 to replace the primilive variable derivative terms in

equation 3.51 with th.e spat ial-toml)oral coefficients (Cl)(i,.i ,k),cu(i.j,k),cv(i,j.k)).

With these procedures, an expression for the derivatives of the spatial-temporal coefficionls

of equation 3AI is found in terms of lower order spatial coeflicienls. The basic recursiw' rclat.ion

NASA/TM--1999-2(t9182

62

is:

Oa+b+%p(i, j, k)

O.r aOy_ Or"

Oa+b+%u(i, j, k)

iga.aOyb Ot_

O'_+b+_c_,(i.j,k)

Ox oOy6 0t _

(i + a)!(j + b)!(I,. + c)!
= cp(i+a,j+b,_.+c)

i!j!k!

(i + a)!(j + b)!(_" + c)!

= i!j!k! cu(i + a,j + b, k + c)

(i + a)!(j + b)!(k + c)!
= cv(i + a,j + b,k + c)

i!j!k!

(3.52)

All recurrence relations need a starting condition and this is found from tile development

of an exact propagator for the linear Euler equations in equation 3.42. Notice tha! the basic

con(lit ion equations 3.42 contain only first order derivatives. Therefore the factorial terms in

equations 3.50 become unity. The basic condition equations 3.42 can now I)e rewritten in torlllS

of the spatial-tenq)oral coefficients by simple substitution:

cp(O,O,l)+mycp(O,l.O)+cc(O,l.O)+n_xcp(1,O,O)+cu(1,O.O) = 0

cu(O,O, 1)+mqcu(O,l,O)+cp(1,O,O)+mxcu(1,O,(}) = 0

cc(O,O, 1)+Cl,(O,l,(I)+myct,(O,l,O)-mxcc(l,O,O) = 0

(3.53)

In addition, the derivatives of lhese equations are also zero.

0a+b+_"

Oa"'!/'z'" (cp(0.0,1)+m.qcp(0.1,0)+ct,(0.1,0)+m.vcp(l,0,0)+cu(1,0,0)) = 0

;:)a+_,+,.

Ov,,q_,__(ctt(O.O,l)+l_!Jcu(O.l,O)+('lJ(1,O,O)+_a'cu(l,O,O)) = 0(3.54)

Oa+b+_"

Ox_!/,z, (ct'(0,0, 1)+ cp(O, 1.0)+ myct'(0, 1,0)- mxcc(1,(I,0)) = 0

It is now possit)le to construcl a recursive definition of the slmt, ial-telnporal coefficients tha!

generates all the required coefficients. The derivatives in equation 3.54 can now l)e replaced

with products of spatia[-leml_oral coefficients and factorials using equation 3.7)2. Aft,tq" lml, t,ing

the coefficient torm with the highest l-derivative on the]ell, side of the equations the following

recurren('_' relal, ion is found:

NASA/TM--1999-209182

63

cp(a,b, c) =

-((_+a)(y_t:rc_'_+a_b_-_+_t(_+a_b_-_+_)_)-I_+b)(n1y_`_(a_+b_-_+c)+_t_(n_+b.-_+_))

c,

cu(., b, c) =

-{il+b)mYcu(a,l+b,-l+e))-II+a)lrp(l+a,b,-l+,')+_2_rcu(l+a,b,-l+c)l

ct,(cl,b.c) =

-[(l+bll,::pla,l+b,-l+cl+myc_,l(_t,l+b,-l+r)))-[l+a}rn_rcv(l+a,b,-l+c)

(3.55)

Since the lefl hand side is always a t-derivative of one higher order, i! is l_ossible Io do the

following loop 'to compute all the sl3at.ial-temporal coefficient relatioushil_s:

l)o[i)o[i)o[
cp[i,j,k]=(-((I+ i)*(mx*cp(l + i,j.-I+ k) + cu(l + i,j.-I+ k)))-

(I + j)*(my*cp(i,l+.i,-I+ k) + cv(i.l+j.-I + k)))/k

cu[i,j,k]= (-((1 -+-j)*my*cu(i,l + .i,-I + k))-

(1 + i)*(cp(1 + i,i,-1 + k) + mx*cu(l + i,j,-1 + k)))/k

cv[i,j,k]-- (-((1 + j)*(cp(i,l +j,-1 + k) + my*cv(i,l + j.-1 + k))) -

(1 + i)*mx*cv(1 + i,j,-1 + k))/k ,

i,O.Min[O.'2*O-k-i]].

j,o,o].
k, 1,:2"O];

Figur(_ 3.;22: Loop 1o compute all sl)atial-teml)oral coefficients in 2D

This method does not produce any equations; therefore, the FORTRAN code is easy to

create and ('Olnl)ile.

After executing that loop, all the spatial-temporal coefficienls arc known. The evolving

variables tltay l_e llOW I)e time advanced. According to the General Form of the exact local

propagator tit eqtlatioH 3.41, only p(O, O, k) is nee(led sitlce we are using cetltered differettce

NASA/TM-- 1999-209182

64

schenwsandtheoriginisat.tile centerofthestencil.Therefore,equation3.4treducesto:

2((?)

p(0,0,/) -- _ cp(O,O,k)t _
k

2(O)

u(0,0, t) = Ecu(0'0'k)t_"
k

2101

v(O,O,t) = _ ct,(O,O,k)/_'
t-

(:5.56)

l)erivatives of these primitive variables require higher-order spatial-temporal coefficiem s. For

example, tb is:
'-'(0)

tb.(O,O,t) = E cp(l'O'k)tt" (:{.57)
k

Higher order derivatiw's introduce factorial terms amt must be accounted for. For example,

t.lw General Form for the primitiw _ variable's derivat.ives is:

2(01

O"+l'lJ(O, O, l) 1

/,.

This form lllay be lllore etliciently computed using the well-known Horner's method [15].

The loop in figure 3.23 e_ciently advances all the variables on a stencil using Ilorner's method:

DO[DO[
faclterm=fac(dx)*fac(dy)

pStllll----O.IJ: USUlII_--_(}.O; VSUlub_O.O

DO[
psum = physicah step*((fact term * cp(dx,dy.kindex))+psum)

.kindex,2*O. 1.- 1]

DO[

usum=physicaltstel)*((factterm * cu(dx,dy,kindex))+usum)

,kimh'x 2*0,1,- 1]
DO[
vsum=physicah step*((fact term * cv(dx,dy,kin dex))+vsu m)

,kindex,2*O. 1 ,- 1]

Pd,.,dy"+ltl;,. j)=l_SUm+(Cl_(dx.dv,O)*factte r. n)
+1 . . ,,

" t.. ,0(t 3)=usum+(cu(dx,(y,O) tactt ernl)

t ''+1 ¢id.,'.d,,' , j)=vsum+(cv(dx,dv,[))*factterm)
.dx.0,1)]

.dy,0,D]

l:igure3.23: Loop for advancing all variableswilh Horner's inethod in 21)

NASA/TM-- 1999-209182

65

Note that all the spatial-temporal coefficients (cp(i,.j ,k).cu(i,j ,k),cv(i,j,k) are solved in the loop

in figure 3.22 first,, and that they were computed in an efficient recursiw" manner by reusing the

data from other lower order spat, ial-temporal coefficients. This efficient reuse of data increases

as the number of data elements on a grid point increases and the number of spatial dimensions

increases.

3.2.4 Cost Comparison of Methods in 2D

The various approaches t,o inq)lement, ing the MESA scheme will llOW he compared for efficiency.

Fortunately, the mosl etticient method for the applications of interest are also the easiesl to

create and compih'.

In gi), there are 3(i)q- 1)'-' data elements per grid point where D is the n|axinlulll order

derivative 1,erln. The number of evolution equations is also 3(D + 1)2 siuce all data elelnelltS oil

a grid point need t,o be" propagated using the MESA scheme. A stencil will have 3(N'-')(1) + 1)'-'

data elements where N is the number of grid points in a row. Since each evolved data element

using the Finile Difference Form is a linear combination of all the data contained in the stencil,

the number of multiplies required per stencil to advance all the data at the center of the stencil

is:

9(1 + I)) 4 N 2 (3.59)

For the constant coefficient linearized Euler equations, the only additional cost is evaluating

the coefficients of the data elements once al, the beginning, but lhis cosl is quickly amortized

and therefore will be ignored here.

The S1)at, ial-Temporal Form evolution method can use either the (;eneral Form or the _l_ellsor

Form of the spatial interpolation. The Tensor Form and (;eneral Form are COlnparal*le in

etficiency when the (;enera[Form is solved in line-groups , but the (_eneral Form requires too

many equations aud will IIOl be considered further.

(:alculating the cosl is a simple matler of counting the lmmber of multiplies I)erforlned after

all the spatial coetticients are (let,ermined. The Tensor Form of spatial interpolation has the

following cost to compute tile interpolated data at location S in figure 3.12 is bounded by

x/'-' D <)

j = 1 --[:_/_) ,'l!j=l) iit_d_ ,r=(_

NASA/TM--1999-209182

66

In addition, computing tile y-interpolated data at location $2 in figure 3.12 is bounded by

the following cost:
o o

"_ Z Z 0+1=(1+0):_ (3.61)

iindex=iJ jind¢ x.=o

And th(" cost of evolving all tile stencil data using the Sl)atial-Temporal Form is:

D D O-dy O-&r

ZZ Z Z
dy=l) dx=O jiudex=O iil_de y=O

21 (1 + D)'-'(D-2 (1 + O))'-'
21 = (3.62)

4

, assuniing tile factorials are conlpul,ed and stored once at the beginning.

If the Hecursivo Tensor form of the propagator is used, then ill addition to the cost o["

det.erniining the spatial coetlicients, wit h costs 3.60 and 3.61, the (:<)st for deterinining lho spat ial-

tomporal coef_cient.s is:
20 o o

Z Z Z = a0o(1 + o) (3.<)
k=lj=O i=0

and the cost, for using those spatial-tenq)oral coefficients t,o evolve all tile data elements ill

the center of the stencil is:

D D

_ 4 + at40) = 4 (1 + t))-' (1 + ao (3.64)
dy=O d.v=O

A ('()st comparison of these three al)proaches ill two-dinmnsions is shown ill table :{.1. The

first column represmlts the width of t.lw stencil in grid points. The second cohumi is the data

depth or oquivah'ntly the iliaXiliinlll order derivative ill a given direction Oil a grM point of th('

sloncil.

The l hird cohllllll displays tile' cosl using the Finite Difference Form. In this ['orlil, it is

aSSllllit'd that the convecliOll velocity is cons|,ant so that, a single COllSl, all| nlultiplios each data

eleinont of the stencil. Most of the coinpntational work is done hi Mathenlat, ica to reduce it to

this fOrlll, Tilno ovohlt, ion is then acconllilislled with a sinlple linear coniliination of the sienci]

dala.

Tli_' t"ourlh COilllnli displays ihe cost of nsilig the Slmtial-Teinporal Foriii. lit this forlll it is

aSSllllled that the spatial coell':icielll, s are fOlllld IlSillg lilt Tensor Pl'OtlllCl fornl.

Tho rift Is cohlnill displays the ('()st of USilig the llecursiv('-Tenll)oral FOi'ln ill whMi the spat ial

coetticients ;-ire' fouud usillg tllo 'lollSOr Product F()rlll alid the t,inie advallCe is acconililish_'d wiili

NASA/TM-- 1999-209182

67

a recursive DO-Loop fornmlation.

Tile last column identifies which nmthod is SUl)erior for the given MESA algorithm.

Notice ill table 3.1 that the Finite Difference form is the best method ill most cases, except

for the cases which are most useful for this dissertation. Tile small high-order stencils simpli_'

wall boundary solutions as will be discussed later.

Next, we will discuss lhe extension of these ideas into three spatial dimensions.

3.2.5 Finite Difference Forln Method in 3D

Tile Finite Difference form expresses each evolution variat)h' as a linear combilJalion of all the

data on the stencil frolll a previous time step as discussed in section 3.2.1. ll results in a

simple single-step explicit finite difference schelne. Each data element on tile stencil has an

associated coetticient for each variable thal's evolved. This is achieved I)3 using Mathematica

to symbolically simplify the exact propagator form from a linear combination of the spatial

coefficients to a linear coml)inalion of the stencil data. l:or exanlple, the exact propagator form

,,+1 is a linear combinalion of 15.(I al) spatial coefticienls,for tile MESA c3o0 al) case for Pi,j,k

_+I
top(i, j, _', s), cut i, j. k, s), cv(i, j, k, s), cw(i, j, t:, .s)). The spalial coefficients for Pij,a. are defined

in lerJns of data elenlenls Oil the stencil using the ieclmiques of section 3.1. The _,._,.,.,is defined

as:

cv(2,2.2) =

(v_L _,__ " 2 ," +l,k-I -- 2 ci-l.j-l./,.+0 + ti-l,j-l,k+l ti-l,j+o,I,.-I

4 _'iLl,j+,,,k+(_ :2-- l i_l,j+O,k+ j 4- V {__--l,j+l,/,'--I -- 2 t i_l,j+ I,k+0 +

_- l,j+l,,{'+l _i+[Lj-l,k-1 i+0,j- I,k+0 "2 [i+0.j-l,k+l +

4 l'_;(I.j+ll.k- -- _ F" i+tl.j+0.k+l ¢i+ll,j+l k-1 +1 "' i+[Lj+¢).k+(l + "1 _'_ -- '2 m

4 t i+O,j+l,k+o --2ti+o,j+lk+14- i+l,j-J,k-1 -- 2 li+l,j_l,k+ 0 +

,N

I i+l,j-l,k+l 2 t i+i .j+l).t,- 1 4- 4 '"-- _i+l.j+0,k+(I
,tl

-- 2 _i+l,j+(j,k+l 4-

'" -- 2 " c"
t,+l.j+l.k-I ¢ i+l,j+l .k+(t 4- i+l.j+l,k+l)/8h';

(3.65)

The other 158 spalial coetlicients art' eXlmmled similarly resulting in a very large evolution

e(lualiolJ ill terlllS Of sl,ell('i] tiara ololllOllts. This l)rocess is too expensive for three-dimensional

NASA/TM--1999-209182

68

N D
2 0

2
3

2 4

5

7

8

9

2 10

2 13

14

15

3 0

,1 0

,1 1

4

4 3

4 4

,1 5

1 6

,1 7

,1 8
4 9

1 l 0

1 11

-1 12

4 13
4 14

4 15

5 0

6 0

6 1

6 2

6 3

6 1

6 5
6 6

6 7

6 8

6 9
6 10

Finite Difference (FD) Spatial-Tenlporal (ST) Recursive Tensor (RT)
1.5563

2.76042

3.46479

3.96454

4.35218

4.66891

4.93669

5.16866

5.37327

5.5563

5.72187

5.87303

6.01208
6.14081

6.26067

6.3?2?8

3.06333

3.7124

4.18241

4.55145

4.85543

5.11393

5.33884
5.53789

5.71644

5.87832

6.02637

6.16279

6.28926

6.40714

6.51752

2.18184

3.23754

3.80672
4.20063

4.50243

4.74719

4.95312

5.13087

5.28725

5.42684

5.5529

5.6678;3

5.77344

5.87112

5..9619!J

6.04693

1.90849 2.38561 2.79:379

2.66652
3.75959

t.42037

4.89672

5.26975

5.57647

5.83698

6.06341

6.26367

6.44319
6.60587

6.75,t6

6.89159

7.01855

7.13686

7.24763

2.15836

3.36248

4.06685

4.56(56
4.95424

5.27097

5.53875

5.77072

5.97533

6. 15836

6.32393

6.47509

(5.(i1414

6.74287
6.86273

6.97484

3.20629

4.17073

4.71767

5.10153

5.39759
5.63866

5.84199

6.01783

6.17274

6.31116

6.4362_

6.55043

6.65537

6.75249
6.84287

6.92739

2.35218 2.8893 3.51878

2.51055

3,71466

4.41903

4.,(11878
5.30643

5.62315

5.89094

6.1229

6.32752

6.51055

6.67612

3.07,182
,1.16331

-1.821:12

5.29611

5.66801

5.97393

6.23383

6.45979

(i.65967

6.83888

7.(1013

3.77056

4.711.(.)8

5.25231

5.63303

5.92727
6.16713

6.36962

6.54,1_3

6.69925

6.83729

6..q(i2()(.)

BEST

FI)

F I)

FI)

FI)

FD

FD

FD

RT

RT

RT

RT

RT

ffl'
RT

RT

RT

FD

F !)

FD

FI)
FI)

FI)

I: I)

FD

FI)

FI)

FI)

FD

FD
FI)

FD

RT

RT

FI)

FD

FI)
FD

FI)

FD

!:I)

FI)

FI)

F 1)

FI)

FI)

Tabh' 3.1: ('()st COml)al'ison (log,_ 1 multiplios i)or grid point) of 213 n,otho(ls

NASA/TM--199%209182

69

al)plicat,ions.Thelargesetof equations(onea,teach data element in tile stencil times tile

lmmber of dala elements at a grid point) are difficult to create and compile. A cost, analysis

(see table 3.2 shows the explicit Finite-Difference Form is not the most efficient 1,4)execute in

the cases of interest.

3.2.6 Spatial-Temporal Coefficient Form Method in 3D

The Sl)atial-Temporal Coefficient Form uses the exact propagator as a linear combination of the

spatial coefficients. The (_eneral Form of the exact local propagator for the primitive variables

will be:

3(0) 4) 0 min{O,3IO)-i-j-k)

s k j i

3(0) 0 0 min(O,3(Ol-i-j-k)

k, s)x _/" _r',,(.,.:,,=.')=- E EE E ' =
s k j i

3((')) O O minIO,3(O)-i-j-k)

,_ k j i

310) 0 0 mm(O,3(4))-i-j-k)

s k j i

where cp(i, j, k, ._), cu(i, j, k.._'), cl,(i, j, k, s), and cw(i, j. k. s) are arrays of spatial-t,m,poral

coefficients. The coelficients with s--0, (cp(i.j.k,O).cu(i,j.k.O),cc(i,j,k.O), cw(i.j.k.O))are

defined using the the techniques of section 3.1 and represent the spatial interpolation coefficients

of each primitive variabl<

The conditions for an exacl propagator to the linearized Euler equations using the (general

NASA/TM-- 1999-209182

7O

Form equations 3.66 is:

p(o <o,1 _(,. !/, =, t) + _= p(<_)'l °)(.r. .q, z, t)+

u'(t)'C)'l'(J)(a', 9, =, t) 4- m qt/°'l'°'°)(a', U, z, t)+

_,_o, ,,o,_))(a., .q, z, t) + _a' l,I 1,<o,_))(a', ,q, z, t)+

ul 1,<o,o)(_,, y, z, t)

u I_<°'1 _(*, y, :, t) + m: uf°'°'l"°)(a', ,q, z, t)+

m!! u I _' 1,_,_ l(a., .q, :, t) + I/1_.o,o _(.v, ,q, :, t)+

ma" u (l'()'°'_))(a'. 9, :,/)

idO'O'O'l)(.t', tl , 2. l) -_-7t_2 t'(tL°'l'°)(2 ', y. =, l)-_-

p(¢)l"u'c))(.r, !1, z, l) + m.q c(°_'<(_)(,, 9, z, t)+

= 0

ma" t'(l"J"_qJ)(a',q, z.t) = 0

u,i <o,o, 1 l(a...q, =, i) + pt _,u,1,o)(a,, .q, =, t)+

_112w(()'°'l'Cl)(a', y, z, t) + _t_y_t!(()'l'°'())(a_, y, 2, l)+

ttta' titf l,q),l),q))(.v,!1, z. 1) = 0

= 0 (a.70)

where 7_a:, my, and m: is t.hc convection velocity in the x,y, and z direct.ions respectively.

Solving these equalions for all values of dimension variables x,y,z and t results in expressing

the spatial-telnporal coefficients as a linear coml)ination of the purely spatial coefficienl.s. For

example, the c;2ol MESA scheme in 3D with an exact local propagat.or requires the following

NASA/TM-- 1999-209182

71

relationship between the spatial-t, emporal coefficient and the purely spatial coefficients:

cp(1,O,O,2)= (l+mz 2) cp(l,O,2,0)+

my mz cp(l, 1, 1,0) A-

(l+my "e) cp(l,2,0,O)+

"2mx mz cp("2, O, 1, O) +

2 n)x my cp(2.1, O, O) +

(3 -4- 3 mx 2) ep(3, O, (), O) +

2 mz cut2,0, 1,0)+

"2mycu("2.1. 0, 0) +

6 m.r cut3, 0,0, 0)+

m: cl,(1, 1, 1,0) +

2mqcv(1,2,0, O)+

2 m.r or(2, 1, O, O) -I-

2 m: ew(1, O, 2,0) +

mycw(l. 1.1,0)+

2 mx cw(2. 0.1, 0)

(:{.71)

Using (,hal relationship and expressing the ot, her sl)atial-teml)oral coefficients as a linear

combination of the purely spatial coefficients, produces the MI']SA algorithln for the pressllre

)_+!
variable Pi,j.k as a linear combination of the spatial int.erl_olal.ion coefficients similar)o equa-

lion 3.44, I)u(much larger in 3D. The numl)er of spatial coeflici('nts used in this linear combi-

nation is equal to the number of data elemenls in the 31) stencil. Each spatial coefliciem has

an associated equation on its left. hand side just as occurs in the finite difference form. except

only one coefficient is assigned per data element regardless of the number of evolving variables.

Let ppkp(i,j,k).ppku(i,j.k), ppkv(i,j,k), and ppkw(i,j,k)respectiw'ly represent the left hand side

equation of the terms revolving Cl)(i.j.k.O),cu(i,j,k.O). cv(ij.k,t)) and cw(i,i,k,O) analogous lo the

21) case.

NASA/TM-- 1999-209182

72

It, is possible t,o then express the pressure variable's MESA scheme as:

0 0 0

T_+I,,,...--ZZZ
i=fl j=O k=O

(ppkp(i, j, k)cp(i, j, k, O) +

ppku(i,j k)cu(i,j, k,O)+

ppkv(i, j, k)ct,(i, j, k, O) +

ppku,(i,j, k)cw(i, j, k, O)

(3.72)

The matrix nuleulnonic 3.46 used ill /wo-diluensions becomes a tensor or cul)e-shape ill three-

dimensions. To evolw' the pressure to lhe next. time step, each of the elements ill the nllleUlllOtliC

form lllllS[he evaluated. A similar mneulnonic is formed for the u,r and tl' velocity variables.

Unlike tile explicit finite-difference form of these equations, evolving tile derivat ive of the pres-

sure p,., will actually require fewer of these lnneuntonic e]emelflS. The pplcp(i, j, k), ppku(i, j, k),

l,pkc(i,j, k), and ppku'(i, j, k) coefficients do nol depend upon the dimension variables x,.q or :

and do not change therefore when. lhe derivative of equal.ion 3.72 wilh respect to x,.q, or z is

lakell. Alld. l.he <T(i, j, k, 0), cu(i. j. k, 0), or(i, j, k. 0), and ctr(i. j, k. 0) can sinlply be shifted, as

was done ill the lwo-dilnensional case. ill tile tensor Cll})e. This is seen by taking the x-derivative

of p:

(tPi ,5, _" -ZZZ
i={_ j=IIk=0

(ppkp(i, j. k)cp(i + 1. j, k. O) +

ppku(i,j, k)cu(i+ 1,j, k,O) +

ppku(i,j, k)cr(i + 1,j, k, O) +

ppku,(i, j, k)cw(i + 1. j, k, 0))

(3.73)

'l'lt¢" new mneumonic 3A8 for p.,, in 2D becolnes a cube in 31) in which each zero rel_resems

a whole role of zeros into the page.

The zero t.erlllS occllr sillct" the c2o1 MESA schelne's higher order derivatives are zero and

NASA/TM-- 1999-209182

73

undertilederivativeinterpretation,t.hespatialcoefficientssatis_':

cp(i> 3,j > 3, a' > 3,0) = 0

eu(i > 3, j > 3. a" > 3.0)=O

c_,(i > 3,.j > 3,/,- > 3, O) = 0

c.,(i > a,j > 3. a: > a,o) = o

(3.74)

(a.7._)

(a.7(5)

(a.77)

Ill general, the higher order derivatives of the evolution variables require considerably less

work in lhree-dhnensions than the finite-difference method because many of the terms become

zero and therefore do not need to be mult.il)lied.

NASA/TM-- 1999-209182

74

Theshiftingprocessisefficientlyimplementedin the loop shown in figure 3.24 that evolves

all tile variables ill tile celller of a stencil:

Do[Do[Do[
psuln=0;

HSUlII=0;

VSUlII---_0;

WSUln=0;

Do[
Do[

Do[
mfac=((iindex+dx)!*(jindex+dy)!*(kindex+dz)!)/((iindex!)*(jindex!)*(kindex!))

psunl=psunl+(mfac*ppkp(iindex jindex,kiudex)*cp(iindex+dx,jiudex+dy,kiudex+dz ,0))

p_=_)st_+(mfac*ppku(iindex_jindex`kindex)*cu(iindex+dx_jindex+dy_kindex+dz`_))

psunl=psum+(mfac*ppkv(iindex jindex,kindex)*cv(iindex+dx,jindex+dy,kmdex+dz,0))

l_SUln=psum+(mfac*ppkw(iindex jindex,kiudex)*cw(iiudex+dx dindex+dy,kindex+dz A)))

usum=usum+ mfac*uukl)(iindex,jindex,kindex)*cp(iindex+dx.jindex+dy,kindex+dz,(i))
usum= usu m+ m fac* uuku(imdex diudex,k m dex)*cu(iindex+dx,j mdex+dy, kindex+dz ,0))

usum=usum+ mfac*uukv(iindex,iindex,kindexj*cv(iindex+dx,jindex+dy,kindex+dz.OI)

usum=usum+ mfac*uukw(iindex,jindex,kindex)*cw(iindex+dx,jindex+dy,kiudex+dz,O))

vsum=vsum+ mfac* vvkp(iindex,iindex,kindex)*cp(iindex+dx,j index+ dy,kindex+dz ,0))

vsum=vsum+ nffac*vvku(iindex,jindex,kindex)*cu(iindex+dx,jindex+dy,kindex+dz,O))
vsum =vsum+ mfac*vvkv(iimlex,jimlex.kindex)*cv(iindex +dx,j index+dy,kindex +dz,O))

vsum=vsum+, mfac*w, kw(iilldex,jindex,kindex)*cw(iindex-l-dx,jindex+dy,kindex+dz,O))

wsum=wsum+, mfac*wwkp(iindex,jindex,kindex)*cp(iindex+dx,jilldex+dy,kindex+dz,O))

WSUlII= WSU 111-}- (mfac*wwku(iindex ,jindex,kindex)*cu(iindex+dx.jindex+dy,killdex+dz .0))

wsum=wsum+(mfac*wwkv(iimlex,jindex.kindex)*cv(iindex+dx,jindex+dy.kindex+dz,0))

wsum =wsu m +(mfac*wwkw(iindex,jindex,kindex)*cw(iindex+dx,j mdex+<ly,kindex+dz,O))
,iindex,O,O-dx]

,jindex,O,O-dy]:

,kindex,O.O-dz]
.+1

Pd,r ,dy .d.: =pstlnl,

_+1

Il ds,,dy,d : _tlSUlII;

I'. . • x ",'lUll'
_g.r', d/j _l ? " '

tl'r_ + 1
dJ', d 9 , d : _ WN/L It I :

,dx,0.D]:

,dy,O,I)];

,dz,O,l)];

Figure 3.24: Evolving all the variables by shifting the data. 3D case

The factorial is introduced for higher order derivatives and simply muhiplies each elelnenl

of the mneumonic matrix as in t,he two-dimensional case. Also. notice t,hat the i,mer loop

size decreases as dx.dy and dz are increased. This corresponds to removing a vertical plane

or multilqe horizontal planes from flu' teusor cul,e mneumonic for each derivative of p. The

NASA/TM-- 1999-209182

75

pl,kp(i, j, k), ppku(i, j, k), ppkv(i, j, k), H)kw(i, j, k) left hand side equations only need to be com-

1)uted for the primitive variables and are reused for subsequent derivatives of lhe prinlilive vari-

ables. While this signilicantly reduces the nunaber of equations requir_d to be compiled by a

factor of 4(D + 1)3 compared to the Finite Difference method, this is still too lnany equations

and takes too long to create and compile the FORTRAN code for high accuracy 2D and all 3D

schemes. Despite the fewer sets of equations, the Si)at, ial-Temporal Form is less efficient than

the Finite Difference method because it needs to recompute the coefficients at every stencil. The

Finite Difference form has constant coefficients assigned Io each element of the stencil: lhey do

no! change with posit.ion.

3.2.7 Recursive Tensor Form Method in 3D

The Recursiw" Tensor Form method eliminates mos! of the complexily of creating am[compiling

the FORTRAN code since only one-dimensional inlerl)olation equations are us_d. This is a

significant advantage in three dinienslons. The lhree-diniensiona] spatial T('nsor Form method

is used to calculate the spatial coeffici_,nts. The time evolution formulation is det.erniilied ill lilt'

same manner as the lwo-dimensional cas(" by developing a recurrence relation for the spatial-

t.emporal coetficient.s.

The basic relation utilized is:

O '_+l'+''+_ cp(i, j, k, s)

Ox_,O!/, Oz,'Ot;

O"+b+_+d cu(i. j, k, ,_)

Ox a Oyt' Oz" Ol "_

O_'+t'+"+'%v(i, j, k, s)

O_+_'+'_+d cu'(i, j, k. .s)

O,r _ Oy t'0: " i_l"

(i+,, l!¢j+b 1!(t'+_)!l ._+d)! cp(i + a, j + b, k + c, ,s + d)
=- i !j !k !._ !

li+")!lJ+_'l'(_+c)!l"+a)!cu(i+a,j+b.k+c.._+d) (3.78)
= i!j'k!._!

(i+al!(J+t_)'(# +")!('+d)!Ct,(i + O. j + b, k + c, ._ + d)
"= i!j!k!s!

(i+a)"(J+bl!(k+_)!t"+d)!CW(i q- a.j + b. k + c,.s + d)
= i!j'k!s!

which is derived ill a manner analogous to the 2D discussion of section 3.2.3.

The equations 3.7S l)rovide a relationship between the derivatives of the spatial-temporal co-

efficicnl.s and can be used to recursively derive all other higher ordor spatial-t_'ml_oral coefficients

when used in ('on,iunclion wilh the basic condition (,qualions 3.7.().

As ill t.hc two-dmwnsiolml case, notico /hat the following basic comlilion ('qualions contain

NASA/TM-- 1999-209182

76

only first, order derivatives.

cp(0, 0, 0, 1)

ru(0, 0.0, 1)

ce(0, 0, I). 1)

cw(O,O,O, 1)

= -m: cp(O,O, 1,0)- 7nycp(O, 1,0,0)- m.vcp(1,O,O,O)-

cu(1,0,0.0)- cv(0, 1,0,0)- cw(0,0, 1,0) (3.79)

= -cp(1,O,O,O)-mzcu(O,O,l,O)-_nycu(O,l,O,O)-mxcu(1,O,O,O)

-- -cp((Ll.O,O)-Tnzcu(O,O,l,O)-mycv(O,l,O,O)-mxcu(l,O,O,O)

= -cp(O,O, 1,0)- m: cu,(0,0, 1,0)- myew(O, 1,0,0)- _nxcu,(1,O,O,O)

These equations can now be used to find all oth,,r sl)atial-temi)oral ('oefficients by takitlg spatial

derivatives of equations 3.79.]n particular, the following is true:

O,,_+ b+,-

=;(el,(0, 0, 0.1) + (m: cp(O, O, 1,0)) + my el; (0, 1,0.0)+ mx ep(1,0,0,0)+ cu(l. O, 0,0)+0x" !/'

or(0, 1.0, 0) + cw(O, (). 1,0))

(_)a+b+e

i)a.,_yt, z'. (cu(O, O, O, 1)+ cp(1.O, 0, 0)+ mz cu((],0. 1.0) + ,tycu(0, 1,0, 0) + ma'cu(l, 0.(],0))

O,_+b+,.

Ox,,qt,:,, (et'(0. 0. 0. 1)4- cp(O, 1,0,0) + m= ct'(0, 0.1,0)+ my c¢,(0, 1,0,0)+ m.r ct,(l. 0, 0, {]))

iU+b+,"

(ctc((}.O,O, l)4- cp(O,O, l.O)4- mz ctc(O,O, l,O)4- mqcu,(O,l.O,O)+ m.veu,(] 0,0,0))
?)x '_/1t' : ' " "

= 0

= 0

= 0

= 0

(:_._0)

Now al)l)lying the basic relation equations 3.78 to these rewritten basic comlition equa-

tiol| :{._0 an(I])uttillg tl|(' ternl with highest t-derivative oil lh(" left provides the following

NASA]TM-- 1999-209182

77

relations:

cp(a, b, c, d)

cu(a, b, c, d)

cc(a,b,c,d)

cw(a, b, c, d)

= -((l+c)_zcp(a,b,l+e,-l+d)+(l+b)7,,qcp(a,l+b,c,-l+d)+

(l+a) m2'cp(l+a,b,c,-l+d)+(l+a)cu(l +a.b,c,-l+d)+

(l+b) cv(a,l+b,c,-l+d)+(l+c)ew(a.b,l+c,-l+d)),/d (3.81)

= -((l+a) ep(l+a,b,c,-l+d)+(l+c) mzeu(a,b,l+c,-l+d)+

(l + b) myclt(a,1 + b,c,-l + d) + (l + a) m.v cu(l + a,b,c,-l + d))/d

= -((l+b) cp(a,l+b,c,-l+d)+(l+c) mzev(a,b,l+c,-l+d)+

(1 +b) m,qct_(a,l+b,c,-l+d)+(l+a) ma'cv(l +a,b,c.-l+d))/d

= -((l+c) cp(a,b,l+c,-l+d)+(l+e)mzew(a,b.l+c,-l+d)+

(1 + b) m!jcw(a. 1 + b.c.-1 + d) -3-(1 + a) ma'cw(1 + a,b,c,-1 + d))/d

Since the left hand side is always a t-derivative of Olle higher order, it is possibh, to do the

loop in figure 3.2.5 to COmlmte all the spatial-teml)oral coefficient relationships:

Do[r)o[Do[1)o[
cp[i,j,k,s]=-(((l + k)*mZ*Cl)(i,j,l +

(J + j)*my*cp(J,l + j,k,-1 + s) +

(1 + i)*mx*cp(l + i,j,k.-I + s) + (

(1 + j)*cv(i,[+ j,k,-1 + s) + (1 +

cu[i,j.k.s]=-(((1 + i)*cp(1 + i,j,k.-1

(1 +.j)*my*cu(i.l +.j,k,-I + s) + (

cv[i,i,k,s]=--(((l + j)*cp(i,l + j,k,-1

k.-I + s) +

1 + i)*cu(1 + i,j,k,-I + s) +

k)*cw(i,j,1 + k,-1 + s))/s)

+ s) + (1 + k)*mz*cu(i,j.1 + k,-1 + s) +
1 + i)*mx*cu(1 + i,j,k,-I + s))/s)

+ s) + (1 + k)*lnZ*cv(i,j,l + k,-I + s) +

(1 + j)*my*cv(i,l + j.k,-1 + s) + (1 + i)*mx*cv(l + i,j,k,-I + s))/s)cw[i,j,k.s]=-(((1

+ k)*cp(i,j,1 + k.-I + s) + (1 + k)*mz*cw(ij,1 + k,-I + s) +

(1 +j)*my*cw(i,1 + j,k,-1 + s) + (1 + i)*mx*cw(1 + i,j,k,-I + s))/s)
,i,O,Min[O,::_*O-k-j-i]]

,.i,0,o]
,k,O,O]
,s, 1,3"0]:

Figure 3.25: Loop to compute all |he spat ial-teml)oral coefticient s in 3D

This method does not, produco any more equal.ions, making the FOHTRAN code easy to

('reat e and compile.

WJlb t lw spalJal-J empora] co_,tticiems kmm:m lbe primJlive variables am] thoir spa! Ja] derjva-

fixes may Iw now I)c lilnc advanced, liel>rring to lhe (4eueral Form of the exacl local propagalor

NASA/TM--1999-209182

78

inequation3.(i6,onlyp(0, 0, 0. t) is needed since we are using centered difference schemes and

wc only wish to time advance the data at tile center of the slencil. There, fore, those equations

reduce to:

3(0)

p(0,0,0, t) = y-_ cp(O. O, O, .s)t _ (3.82)

3(0)

u(O,O,O,t) = y_ cu(O,O,O,s)r" (3.83)
8

3(o)

r(O,O.O,t) = Zc_'(00'0's)r' (3.84)

310)

w(O,O,O,t) = __,c_,(O,O,O,._)r' (:l.aS)

Derivatives of lhese primitive varial)les require higher-order spa! ial-teml)oral coefficients.

For example, p: is:
31 o)

p,,. (O, O, 0, t) -- Z cp(1,0, 0, s)r" (3._6)

tligher order derivatives inlro(tuc_ _ factorial terms and must t)(, accounted for. For examl)h _.

lhe (;eneral Form for the prilnitive variabh,'s derivatives is:

3(0)
O"+_'+"p(O, (1, O, t) 1

(_).: qf,:,, = _ _cp(,, b, c, ._)t" (3.S7)

'I'hcsc *'(luations arc in a simple Taylor series form in time and may I)(' mor_ _ efficiently

computed using tile well-known ttorner's method [15].

NASA/TM-- 1999-209182

79

The loop m figure 3.26 efficiently advances all the variables oil a stencil using Horner's method

DO[DO[DO[
factterm=fac(dx)*fac(dy)*fac(dz)

l)sum=0.0; usUnI_---0.0: VSIllnz().0; WSUlll_-_-0.0

DO[
psum=physicaltstep*((factternl * cp(dx.dy,dz,sindex))+psum)

,siMex,3*O, 1,- 1]

DO[
usum=lfllysicah step*((fact term * cu(dx,dy,dz.sindex))+usmn)

,sin dex,3*O, 1,- 1]

DO[

vsum=physicahstep*((fact t.erm * cv(dx,dy,dz,sindex))+vsum)

,sindex,3*O. 1.- 1]

DO[
wsuln =l)hysicalt stel)*((facl t.er m *

,sindex.3*O. 1.- 1]

Pd,,',dyn+l ,d: t''_, 3,"k)=l)SUm+(Cl_(dx,dy.dz,0)*fact t er m)
n+l

ud.,"dU,_=(i, j. k)=usum+(cu((lx,dy,dz,0)*fact! erm)
,rt + l _ •
t d.,',,_v,d: _, J, _")=vsum+(cv(dx,dy,dz ,0)*factlerm)

w'_+ld_.dy.oh t' "_,J,"k)=wsum+(cw(dx,dy.dz.0)*factlerm)
,dx.0.D]

,dy,O,D]
,dz,0,D]

cw(dx,dy,dz,sindex))+WSUln)

Figure 3.26: Loop h)r advancing all variables wilh ttorner's method ill 3D

Note that all lhe spatial-teml)oral coe[ficients (cl)(i, j, k, .s), cu(i,j, k, _), cv(i,j, k, s)) spatial-

teml)ora] are solved in the first set of loops 3.25, then the prinfit.ive variables are advanced

ill the nexl sel of loops. In neither case are eXlel_sive equations required. In fact. the size

of the equations are conslant for all MESA schemes in both of these loops. Only the spalial

coefticients require equal ions l.o be generated ill Mathematica, but these are limiled io relatively

small one-dinwnsional interpolation equations.

3.2.8 Cost Comparison of Methods in 3D

The lhree methods for iml)lemellting the MESA suite of algorilhms will now be compared

for efticiency in tel'illS of muh.iplication ol)eratioll COtllitS [)el' grid point, llecall thai in lwo

dimensiol>, lhe I{ecursive Tensor Form was t.he besl choice for Ollly a small Slll:,sel of MESA

algorithiiis fortuiiat(,ly, they were the algorithnis of IliOSt illlel','st in this work. l:ortIHiatcly,

NASA/TM-- 1999-209182

8O

again, the easy to create and compile Recursive Tensor form method also turns out to I>e

successful in three dimensions.

In three dimensions, there are 4(D+ 1) a data elements per grid point. There will be this same

number of evolution equations since all tile 4(Na)(D + 1) :_ data elements need to be propagated

using the MESA scheme. Since each evolved data element using the Finite Difference Form is a

linear combination of all the stencil's data, the number of nmltiplies required per stencil is:

16 (1 + D) _ A,'a (3.88)

l:or the constant coefficient linearized Euler equations, the only additional cost. is evaluating

tit(' coelficients o[' lhe data elements once at the beginning, bu) this cost is quickly amortized

and lherefore is negligible.

'File Slmtial-Temporal Form evolution method can use either the General Form or the Tensor

Form of the spatial interpolation. The Tensor Form and General Form are comparable ill

efficiency when the (;eneral Fornl is solved ill line-groups. Bul the (;eneral Forlll requires too

many lengthy, intractable equations and will not be considered further. Tile Tensor Fornl of

spatial interpolation has the following cost to COlllptlle the x-interl>olated dala al location S ill

figure 3.20 is I)ounded by:

by Z

.'v/'_, ?,'/'-' D D O

E E E E E o+i=(,+,,;-',¥-'(,+ot-'
/,'= I -(N/2)j = 1-(N/2) d: =l) dy=0 iinde.v=O

And the cost, to compute)he y-interpolated data at, location $2 ill figure 3.20 is bounded by:

(.) 0 D N/2

-- Z E Z Z
iit_d_.r=l)j*ndt.r=Odrm-(} /,.=l-(N/2)

Finally, the <-(>st lo COml>ule lhe z-int,ei'l>olat(,d da(a at location $3 in figure 3.2(} is bounded

0 0 0

iin de ,v=O j il_ de a'=O kiT_ d, s'=()

The cost to evolve the primitive variables and their spatial derivatives using the Spatial-

NASA/TM-- 1999-209182

81

Temporal l?onn is:

D D D 0 - dz 0 - dy 0 - d.r

EEE E E E
dz=O dy=O dx=O kinde.r=O jit_d_x=(I iinde.r=O

-37(1+D) 3(D-2 (1+O)) 3
a7 = (3.92)

assuming the factorials are comlmted and stored once at the beginning.

The costs of evolving those same variables using tile Recursive Tensor Form is divided I)e-

tween two sets of loops, One loop is for determining the spatial-temporal coefficients and its

cost is bounded by:
30 0 0 0

E EE E34 = 1020(1 +0) a (3.93)
s=t k=Oj=O i_0

The oiher loop uses those coefficients t.o evolve the variables and its cos! is bounded by:

D D D

_ _ 240 + _ = (5(1+ r)/(1 + 40t (a.:_)
d---(I dy=o d,r=O

As was done for the two-dimensional case, a tal)le comparing the efticiencies of the three

implemenlations of the MESA scheme is shown in table 3.2. The colunms have lhe same

meanings as before in table 3,1. An interesting result here is that the Recursive Tensor Form

becomes the best algorithm much sooner in three-dimensions. Notice, however, that a 4 × 4 × 4

stencil still requires al. least, a 23 ''d order algorithm to be competitive with the Finite-Difference

Form. At this level of accuracy, the effects of 64-bit precision dominate lhe calculalion aml

yields this algorithm ineffective. Therefore, only the 2 × 2 × 2 sl,encil actually benefits from

the Recursive Tensor [;Orlll. Forlunalely, this hal)pells to he the best stencil Io use in complex

geometries and is used extensively in this work.

3.3 Generating the FORTRAN Propagation Code

The methods of the last s(-ct.ion will itnplemelll the MESA l)ropagation scheme applied t.o lhe

COllStattl coefficient linearized Euler equations. The Recursiv,_-Tensor lllet,]l()(l is l]le tllosl etfi-

cient when small slencils are used and small slet|cils synel'gislically work will wilh lhe needs

of l)roblenls involving complex geometries. (;enerating F()IITIIAN co([e is sitnplitied wilh the

Recursive-'Feusor t½rm si_w_" eve, the 21 "_ order accuracy uwthod's e(tuatio,s at'(" utubw 2(I lira's

long in 21) and :ID. If large multidimensional arrays are used il is l_ossibh " lo wril.v many of

NASA/TM-- 1999-209182

82

N D Finite
2 0
2 1
2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

2 10
2 11

:2 12

:2 13

:2 14

:2 15

3 0

4 0

-1 1

4 2
'1 3

4 4

-t 7)

,! 6

.1 7

.l 8

4 9

4 10
4 11

4 1:2

4 13

4 14

,l 13

5 0

6 0
6 1

6 :2
(i 3

6 1

6 5

6 6

6 7

6 8

6 D

6 10

Difference (FD) Spatial-Temporal (ST) Recursive Tensor (RT)
2.10721

3.91339
4.96994

5.71957

6.30103

6.7761:2

7.1778

7.52575

7.83267

8.10721

8.35557

8.5823

8.79087

8.98398

9.16376

9.33193

2.53656

4.12901

5.10979

5.82125

6.37985

6.83975

7.23063

7.5705
7.87116

8.14071

8.:{8499

8.60833

8.814O4

9.00469

9.18235

9.34867

2.95134

4.3217:2

5.06(.)85

5.58994

5.98934

6.31373

6.58691

6.82288

7.03058

7.21606

7.38363

7.5364-1

7.67689

7.8O682

7.92771

8.04072

2.63548 3.09'I12 3. 7638

3.49638

5.137:24
6.1436

6.87016

7.43859

7.90538

8.30134

8.64511

8.94885

9.2209
9,46721

9.6923:2

9.89951

10.0914

10.2702

10.4375

3.0103

4.81648

5.87303

6.62266

7.20412

7.67921

8.08089
8.4288,1

8.73576

9.0103

9.25866

9.4853. {)

9.69396

9.887{}7

10.0668
10.2:1")

4.31027

5.3789:2

6.30283

6.81204

7.20525

7.52565

7.796O5
8.02996

8.23608

8.4:2031

8.58686

8.7388:{

8.87857

9.0079
9.12_26

9.:24082

3.3{} 103 :3.81Zq 1 4. 72409

3.53857

5.34475

6.4013

7.15093
7,73239

8.20748

8.60916

8.95711

!).:26-t03

!).53857

i).7_(i93

4.07482

5.709G

6.71792

7.44667

8.01686

8.48501

8.88204

9.22668

,().53111

9.8O374

10.0506

5.05757

6.3017:2

7.01865

7.52455
7.91584

8.23498

8.50449

8.73774

8.94 33,1

9.12717

.9.29:{39

BEST

FD

FD

FD

RT

RT

RT

RT

RT

RT

RT

RT

RT

lfI"

RT

RT

RT

FI)

FI)

FI)

FI)

FD

I:D

RT

R'F

R T

RT
RT

RT

RT

RT

RT

RT

RT

FD

FI)

FI)

FI)

FD
t:I)

FD

RT

RT
RT

RT

RT

'lal>h" 3.:2: ('os({'onq)arlson (Ioglo mult, il)li(-s per grid l)oint) of 3I) m('! hods

NASA/TM-- 1999-209182

83

thesecodesbyhandassimpleFORTRANI)O loops.However,theselarge multidimensional

arrays are difficult to kee l) ill cache and call be less efficiem than using multiple DO loops oil

arrays with fewer dimensions. It is possible to use Matllematica as a precompiler by subdividing

large multidimensional arrays into many smaller arrays to lake advantage of the RISC cache-

based architectures. This leads to more complicated FORTRAN code, but since the computer

is writing it and the code is easily compiled this is a successful approach.

Also, it. is necessary for testing purposes to provide initial conditions to all the variables

and this can result in many equations. For example, in 3D the c2o10 MESA scheme has 5324

data elements at each grid point. Each data element needs an initial condition assigned to it.

This would therefore require 5324 equations be developed and implemented in FORTRAN. This

tedious procedure is best acconlplished with automatic code generation, lndeed, the ahility to

quickly generate the many modestly COnlplicated codes in this dissertation was necessary for the

grid studies performed: And it, has resulted in higher personal productivity.

The idea of generating FORTRAN code using a symholic manilmlator is nol new lo this

work. Most of the computer algebra packages provide facilities for converting an equation into

(: or FORTRAN and more recently C++. The challenge in this dissertation has been to reduce

the complexity of t he equations so that they could he coded and compiled. The Recursive Tensor

Form in]plementation and the Tensor Form spatial interpolator combine t.o provide relatively

simple codes: the 21 '_t order c:2o10 3D MESA scheme can be translated into a fully independent

FORTRAN code in less t.hall r) minutes and compiled in aboul, the same time.

A key, benefit of automatic code generation is the ease of improving the FORTRAN code's

efficiency and the ease of incrementally adding complexity to the FORTRA N code. Since float ing

point, operations are significantly faster lhan memory accesses in modern computer systems, one

way to improve I)erformance is to organize memory accesses 1o minimize cache nlenlory Misses.

The process of rewriting a FORTRAN code consisting of a few complexly dimensioned I)O loops

to very many less complex DO loops to improve efficiency can be time-consuming: but doing

the same activity within Mathematica is a relatively simple task. Also. since the forms of the

one-dimensional equations in the _l>nsor form are the same in each dimension (only the indices

switc]l), it is convenbml Io use a Mathe]]]atica rule to create l.he otller equalio_s ral]ler thal_

solving IJw pqllal, ions anew each lime. The leslillg alld developnJ,,nl of l.]lest, algoritlm)s couhl

iJol hay(, I)een done vcilhoul 1.h(" aulomalion as it perniitle(] fas! and ,,rror-fr,',, l('sting of each

NASA/TM-- 1999-209182

84

algoritlnn.

The actual process of automatically generating FORTRAN code is simply an effort, in pattern

matchiug and rules application and is more of an art than a recipe, nmch like I)rogramming.

The artificial intelligence language LISP is clearly a foundation for the Mathemat.ica language.

Tile unilied theme of representing everything as a symbol (data,function.equation,etc.) perlnits

flexiMe and intuit ive programming t.hat is invaluable in the code generation process. Procedural.

Functional, String-based, Rule-based, and List-based programming are possible in Mathematica

and used in this work. When creating a FORTRAN code, the FORTRAN is essentially OUtlmt

from Mathematica as text. But. creating that. text is made possible by assigning different

meanings to each part of tile text in Mat.henmtica. For example, in Mathelnatica it is possible

to represent an equation as a simple symbol. FORTRAN needs the act.ual algebraic form and

so the simple symbol representing the equation is expanded into its fullest algebraic form. The

same equation form may be used slightly differently within the same FORTRAN code and if

there is a pattern t.o it. then a rule can be created to implement it. Tile representation of

complex relationships via symbols also aids in debugging code since when hill5' expanded into

FORTRAN code much of the higher structure is lost. For example, a single sign error is difficult

to detect but easy" to do when many algebraic equations are being coded into C or FORTRAN:

tile autolnation prevents illany of these occurrences.

Each FOt{TRAN subroutine has a .Malhematica Module assigned to it. The shell of the

sub,'oulino is simply stored as text in the module. By simultaneously writing tit(" program in

Mathematica and FORTRAN. it. is possible to eliminate many errors as well as conlirm 1.lie

code generation process. The main body of the FORTRAN subroutine can vary significantly

depending upon which MESA algorithm is t,sed; But in all cases, all changes to the main body of

a particular FOllTF{AN subroutine is effect.ed by ONLY its partnered module in Mathematica.

The goal is t.o havo the entire program run m Mat.llemat.ica and FORTRAN. Many of the

computer algebra packages provide a compile option in which it will convert its modules inlo

FOI{TRAN. This only works with numerical modules; it does not. illcorporate the symbolic

capabilities necessary for this work.

Typical coding challenges thai needod t.o be resolw_d were:

Mathematica Mathematica had a bug in it. on SGI syst.enls that resulted in core dumps for

largor (_r&qmer basis problems: a work around was to app]y lino-group solutions or gen-

NASA/TM-- 1999-209182

8,5

erat.etheFORTRANcodeoil a SUNworkstationwheretheproblelndoesnotexist. Of

course,thiserrorwasfixedin Mat,hemat,ica3.0.2,at,tile t,imethisworkwasnearlycon>

plet,ed.Tile Recursive-TensorFormmethodonlyexperiencedthisproMemfor methods

higherthantwenty-ninth order.

Portran Tile Fortran COlnpilers on SUN, SGI. and IBM workstations have buill-in continuation

line lilnits, and [imils on the complexity of the equations thai they will parse. They will

sometimes compile large formulas, but the compiled st, atelllents lllay fail to rtlll during

exectltiOll. The symbol tables are also easily exceeded. Many of these limitations call I)e

handled with compile lille" options. FOI(I'RANg0 in free form permits 39 continuation

lines, and in fixed form only 19 continuation lilies [2]. These limits can prow" too limiting

for the long formulas it_ higher order multidimensional algorithms; a work-around is to let

Mat]lematica])reakup the equaliolls itlto sllla]ler sill>equations thai are added IogelJler ill

FOI/TICAN. Fortunately, this call be done ill this work and the length of the equations are

minimized using the Hecursive Tensor form.

Unix Unix shell commands like "sed" aml "' awk'" haw' file size limitations on certain systems: a

work-around is t,o kee l) the files small by doing pat.tern translation in Mathemat.ica. This

problem is also avoided by using the Recursive Tensor form.

Computational Trade-offs must be made between increasing the work of M athematica, and

increasing t,h_' work of the Fortran compiler, and increasiug the work of executing the

Fortran code. Fort, unately, the propagation code using the IRecursive Tensor and Spat.ial

Tensor is sinlph' enough for today's technology. Unfortunately, those tnethods cannot

be applied to general geometry proldems, in which case, the (_eneral Form of spatial

interpolation must be used.

Melnory Forming a (;r6ebner basis for l,he ideal in equal,ion 3.6 call consume all memory

unless variable reordering and matrix decomposition are perfornled firsl as discussed ill

sect,ion 3.1.

Many checks are il_clu<led ill the auton+ation process, lint there is still a good deal of failh

iwcolved in assuming that Mat hematite is working prol>erly tBr tile larger I>roblen_s. 11 is possible

to clwck the results from Malhematica with results from a compet, ing COlllplller algebra program

NASAJTM-- 1999-209182

86

such as Maple or Macsyma, but. this has not yet. been done since the numerical resuhs show

good agreement with the analytical solutiolls ill chapter 7. Despite these validation all.erupts,

unexpected problems can develop. For example, Mathematica 3.0 uses a different Fortran code

output format than does Mathemat.ica 2.2. The out.puts are essentially the same except t.he 3.0

version automatically puts a decimal at the end of each integer whereas the :g.2 version does

Hot. This difference generally is not noticed excep! when two integers are divided. Without the

decimal points, integer division results in a truncat.ion of the decimal informal.ion. Since the

development of the MESA algorithm is auton]ated and the equations are lengthy, this probh_nl

went undetected at. first since t.he initial lower order test cases did not have itlteger division in

their equatious. These examples indicate t.he ditficulties that can occur due to software and

hardware limitations. Since the systelllS aro not perfect, it. is important t.o atlt.Ol|Jalt, the code

generat.iotl process to mininfize the ett'ect.s of hunlan mistakes and maximize the detection of

systezn errors. The cumulative effect of the l,ally random areas in which t.hiHgs can go wrong

is why a recipe is not possible for the creation of code.

The entire FORTRAN code generation soft.ware written in Mathematica for :_D problems

is al)proximately 57 KByt.es and for 3D problems is approximately 96 KByt.es. This software

is reused to generate all the 2D biperiodic and 3D triperiodic boundary problems in FOR-

TRAN. The ¢'2¢)10 MESA scheme FORTRAN code written by the Mat.hetnat.ica software iH 21)

is approximately 377 KBytes and itl 3D is apln'oxin]ately 145_ KBytes.

N ASA/TM--1999-209182

Chapter 4

Wall Boundary Mapping in

Two-Dimensions

The previous chapters described the development of the MESA scheme for solving the linearized

Euler equa!ions in time oil a (!artesian lll_sh without solid wall boundaries. The addition of geo-

m_q.rically complex boundaries complicates tile solution of the linear sysl em of equations in t.ilne.

The addition of boundaries call (:reate instabilities in an otherwise stable MESA scheme [100]

and reduce its accuracy. Ill addition, thecomI)lexil.yofformulatinglhe problem in a ["OI{TRAN

code can he enormous if not automated [116].

This chaplet I)reselllS tile au_olnaled nletbods llecessary for the inchlsioll of solid wall })Otlll(I-

aries. A wall boundary is lhe locus in cOlnl)utationa[space which corresponds 1o an actual

physical boundary. Appropriate conditions for the flow al lhese boundaries at(" assumed to be

known for all time.

4.1 Introduction

MaJ)y melhods for grid generation haw ' been developed [111]. Mos! of the melhods require

considerab]_" hlnnan inleraction for successful implementation with realistic geolllel.ri('s.]I call

take" monlhs or y(,ars to g(,neral.(' a singl(' grid for a real apl)lication. A m('thod is])l','SelllC'd ill

Ill(' following sections lhal uses ('onlph'x bul aul.onlal.('d MI_]SA schenles on all easily g('n,q'aled

NASA/TM--199%209182 87

88

Cartesian grid. Tile use of Cart,esian grids significantly reduces t,he grid generation effort at

the expense of increasing the complexity of the numerical scheme. Fortunately, this complexity

is dealt with in all automated manner. Various Cartesian-based grid approaches have been

used in the past [115], including recently developed wall boundary conditions with ghost cells

for the l)R! _ scheme [106]. Renewed interes! ill the approach is due to continued difficulties

wit, h body-fitted grid generat, ion (structured, unstructured, lnultiblock, et, c.), alld tile relative

ease of aut,olnaling the generation of (:artesian-based grids. Traditionally, l he essenlial issue for

(!artesian-based grids has been either computing and characterizing the geometric intersections

bet,.veetl the (_artesian flow field cells and the surface geometry (using a flux formulation), or

the devolol)lllelll of ghost cells out,side t,he boundary with data vahles chosen l,o maintain well-

poseduess of lhe finite-difference schellw. For example, a 3D Cartesian mesh is used in soh'ing

l he [iuile volume form of the Euler equations in reference [79], and a 21) (!artesian mesh is used

to solve the Navier-Siokes equal, ions ill [17]. Itowever, a new aF, l)roach has t:,oeu successfully

inll>leniented in this work that uses nlapped fill points inside the boui_dary. This nlapl_iug

considerably sintlAities lhe sohliion of near boundary grid points (till i>oinls) as will be shown

later. This tliapping is further siniplified I)y using very small st ellcils, a core capability of lhe

MESA schenie.

('artesian meshes inusl be ahle lo vary the level of resolul,ion according to lhe fi_alllres of

bolh the geometry and flow field unless all efficient higher accuracy algorithm with very high

resolutioll can he used. When a grid is locally refined, an efficient data structure for nearest grid

neighhor calculations is tilt" Alteruat, ing I)igital Tree [17]. The mesh resolulion direclly affecls

lhe accuracy and lhe (TL stability constraint: And finer meshes generally require lllore l inle

steps to atlvance a solution through time. Local grid refinelllent call l)e avoided by increasing

the accuracy t)f lhe MESA schenle which is used locally. By including more derivaliw, terms

at the h)cal grid l)oints, the stencil size remains unchanged and the ('FL stabilily ct)nstrain!

is |herefore vnafl'ected. 'Ellis dissertation has no| addressed lhe issues of adaptive resolution

bul _he special advantages of adaptive algorithm resolution via tile MESA approach instead of

atlal)tive mesh resolulion are signiticant and will I)e developed in |'ulure work. In this work. lhe

more general issue of solving complex geomelry problems is develol)ed.

Near a I)oulldary surface, lhe (!arlesian mesh will have grid points on either sid(' of lhe

I)oundary, and the boundary localion will generally fall t)elweell grid i)oinls. This leads If)

NASA/TM--1999-209182

89

tile well known probh'n_ of clipl)ing cells [10], with potentially small cell fragments left inside

the computational domain, If the boundary points are used instead of regular grid points,

the stability limit on the time step size will in general be lowered. This problen/ is lypically

handled by locally increasing the grid density and locally decreasing the time step size. This

results in more computational work and a loss of accuracy in extrapolating from liner t.o coarser

meshes [10, 17]. This dissert,at, ion has used the concept of mapped fill cells to maintain the

accuracy and the (!FL condition across the entire computational domain. Mapped fill cells and

their application will be the topic of the remainder of ibis chapter.

4.2 Definitions and Approaches

Consider a square or cubic uniforln (:artesian mesh of grid points. Each grid point is labeled in

one of four dift'erent ways. either as all interior grid point, a needed fill grid point, an unneeded

fill grid point., or a boundary grid point. Nexl, assume ,'-;o111("solid wall geonlel ry is superinll)osed

into this lnesh. For example, a square has been us'd in figure 4.:/ in which the interior of lhe

square contains the acoustical l)ert.urbal, ions modeled by the linearized Euler equal, ions. Those

grid points that fall within or on the edge of a solid object are labeled "boundary grid points".

Those grid pOilllS within the solid ob,iecl are Ilot tlsed since no flow travels lhrough lhe solid

boundaries. But I)oundary grid points Oil l.hl-, edges of the object are used for calculating the

effect of boundary condilions on the interior grid points. The "'interior" grid points are those

points which do no! require inforlnalion from a "' J)oun(lary'" grid 1)oint for their lime advancelnenl

(ie. their stencil is completely within the flow field). The remaining grid poinl.s are labeled as

"needed fill'" points, except that do tier have an "interior" point adjacenl to them, they are

labeled as "'mmeeded fill'" points. An unneeded fill point can be seen in [igure _l.:{ in the corners

of the square. The unneeded fill 1)oints are not required by any of lhe interior grid points for

their t,inie advancement. The specific laheling of a given (:artesian mesh's grid points depends

on the stencil size. In figure .1.3 the stencil size is either {2 × 2) or (3 × 3), corresponding to

MESA schemes c2ol) and c3o0 resl)ecl, ively, with 1) >_ O.

NASA/TM-- 1999-209182

9O

iJu Uu
7/7+-87=0

! •
{_,,+I
m •

1 h 1 .I_

{_,_+I

_(.+1)

[r T_
b [i:t

Figure 4.1: One-Dimensional Wave l-hluat, ion Boundary Treatments

NASAFFM--1999-209182

91

Approa(:hes

Several approaches using a c3o0 MESA central stencil in one and two spatial dimensions shown

in figures 4.1 and 4.2 will be explored t.o niotivat.e the particular approach adopted by this

dissertation. The one-diniensional and two-dimensional wave equations will be considered. The

new solui.ioll value [7,,+1 in figure 4.1 can be calculaled by the MESA propagation algorithm

'_' is acluallv located on the otherusing the three data vahies 1'",,,. I o:'', is,7,_. and lhe data vahle 1 ,,

side of the boundary so that it is 1101 even defined. Tile dat.a vahle 1:" is said t.o be located
p

at. a "'ghost point" outside of file doniain fbr lhe i)robleni. The boundary condition is given by

specifying data along the boundary for all lilne. The boundary in figure 4.1 is localed on lhe 1

axis.

Several possible boundary treat, nients can be considered for this exanlple. Tile niost obvious

approach is to use a nonuniforln stencil for inlerlmlal ion, and solve for [,:,+1 using the boundary

data (.r, inst.ead of t.he ghost point data (_" This shori.ens tile dist.ance between ('" and the
b p ' - _,

stencil point, to its right. It is now necessary to reduce the tilne st.ep size in order Io sal.isfy

tile CFL stability condition. Another idea is to use the houiMary data that occurs Oll l[le

ciiaracteristic between the boundary and the point where a lleW sohltion is desired. This niethod

of calculation should maintain the ('FL condition, bul il would require knowing the slope of tile

charact.erislic Cllrves (and surfaces ill higher diiilensions), alld t.heil COlllpUtillg t.heir intersect.tolls

with the bolindaries, it third idea thai was a.tt.einl)ted in this work was Io use the boulidary

data I '''+1 at the new t,inle level. This approach eliminal,ed the need t,o calculate the slopest,

of the characterisl.ic base cllrves and surfaces, and it. inchlded all the necessary inforniat.ion

for ca]culal.illg a flew sohllioli vahie, lull. it was llOf st.a.lJle for)t = AtXT,,, < 1. hi fact., stability

unexpecledly ilnprow_d for tile c3o0 algorit.lliil by choosing A > 1. These approaches were 11ol

liursued further.

hist.ead, a reduclion in lhe conll)lexil.y of the filiit.e-difference SClleine for I)ropagating tile

sohition is acconiplished by developing an approach that uses a (:artesian grid ihat is equally

spaced lhrougliout lhe physical doinain. One possible way t.o achieve this is t.o label 1_<'' and

I": +l as fill poinls lhat are liOl t.illle l)ropagated wiih the usual MFSA sciwnie. Instead. a linear

spatialinterpolani is fbund ai eacli tiinesie I that is a finiction ell':' and/','_. Then with point

l':: soh, ed for ilSillg thai spatial inl.erpolani, it is possible to lillle advance l','}, t.o 1,7:+1 using

NASA/TM--1999-209182

92

thestencilpointsU_', t"r' + al,d I_o'+ (using the c3o0 MESA scheme).

Now consider the two dimensional convective wave equation where the same idea of spatially

interpolat.ing tile fill points introduces the additional complexity of finding a mapping of the fill

points to a general wall geometry.

with general solution

0u 0u 0u

o-7+ M._&-7+ M,,_ = 0, (,1.1)

"2 "2

l=(] ;'----

(4.2)

('onsider the second order algorithm (MESA scheme c3o0) on a uniform 3 × 3 square stencil

with solution values but no deriwttives at. each grid point. A typical problem wit.h a two di-

mensional boundary surface is illustrated in tigure 4.2. where a corner of the bounding surface

intrudes into the stencil. The wall boundaries are located Oil the planes formed by t.he (x, t)

axes aim the (y.t) axes in figure 4.2. Not.ice thai three data values oil the stencil required

for time advancing lro',o are at. ghost points tl:' *'.1" l(l'.o' _t'.'") on t.he oilier side of the bound-

ary. .]ust as ill t.he previous one dimensional cas<,, it wou]d I)e desirable to use the inlerior

grid poilitS (1{_[',,, l _'' (_'' I_, ') , 1._,, . (Tnt.o, l.,,, ,,,.<, ,,,4,) to int.ert)olate tile values of the three fill poinl.s

'tl

(I',{',,, I'_',', , / o.1,)- And then t.o use these "filled in" fill points t.o time advance l:" I.'" and
• • Tit,;,1] _ -- j'}_,(_ _

I',','+._, using tile standard MESA techniques. Notice however, that the three advancing points do

no! have the same stencil, |)tit do share common fill points. The fill points are calculated once

for each time step before lhe interior grid point.s are advanced.

The polynomial int.erpolation function for the fill points is determined by solving a linear

syslelil formed I_y the ktlowII interior grid point.s and tile boundary conditions applied t.o each

tlliknowll fill point mapped to a boundary. "l-he 3 × 3 stencil centered eli [rn ili this example
TN ,1,

has 6 known dat.a values on interior grid points and three unknown fill points.

The c3o0 MESA scheme is a second order scheme and therefore requires a! least second order

accuracy in its boundary condition solutions as well. In this simple example, the dala valm's

(I :_','#. I:+'/,, I'/'.,,,)can be used directly along with the 6 interio,' grid point.s to form a second ord,q'

interpolanl. This is achieved by real)ping t.he fill points horizomally to the nearest I_oundary

NASA/TM-- 1999-209182

93

_- -I- KT-F _ --- 0

[_n+l
l e o, Q

cN

I t_

b,

17' l,*"
b, 17.

_ x (_y

Y

I
e[._ O[_ el. ._[

@t of,. *I'" el _ x

l _t,,m

o1:. el,,, ol,,, ol.,,
/,Ill }'}1 ,/?1 O,771 p,lll

Top View Of Stencil

Figure ,I.2: Two-Dimensional Wave Equation Boundary Treatments

NASA/TM-- 1999-209182

94

at which point tile boundary condition(s) are applied. If the interpolanl, function is written as

a I,agrangian polynonlial, the linear system will require inverting a 3 x 3 system ill this simple

wave equation example and is discussed Further ill chapter 5 (The Lagrangian form will have

only 3 unknown coeIficient.s, the fill poinls). The rank of tile linear syst.exll will be equal lo the

nmnber of fill points which will never exce_'d 7 as shown later.

One requirement to forming a consistem linear system is that never more than 3 stencil

points be collinear when using the c3o0 MESA scheme. I! is thus important that the mapping

of fill points to a boundary of general shape provide this linear independence of stencil point

Iocalions, while minimizing the distance from fill point to boundary to maximize accuracy in

the spatial interpolant. Therefore. one of the central issues that needed to be solved was how to

geneI'ale, in an automalod way, a real)ping for each fill poild to a boundary of general geometry

that forms linearly consistent syslems of interpo]ants of wquired accuracy and stability.

A sample mapping for a unit box rol,aied -15 degrees r_.lalive to the grid is presented in

figlm' 4.3. The arrows iudicate where the till point is mapped onto lhe boundary. The I_ouml-

ary condilions are then applied at these locations and a consist.en! spatial interpolallt is thus

getwralcd.

4.3 Stencil Constraint Tree

Tlw problem of timling a mappillg for all fill points t.o the wall boundaries is simplified by frst

standardizing the dimension size of the stencil t.o 3. Higher order schemes will be achieved by

adding more derivative terms into the curren! stencil instead of the typical approach of enlarging

the stencil. This standardization fits nicely into the c2oD aml c3o0 MESA sc[lelltPS with tile

selection of I) d_'l)_'mlent on the accuracy and resolulion required fox" the particular simulation.

The c2oD MESA schemes us¢'a staggered grid, two-stop process that results in effectively using

a 3 × 3 si_'ncil with artificial dissipation as shown in figure 4.4. The "X" grid points in this figure

are evolved first using it's 4 neighboring grid poinl.s with a half time-step. Then the cenler grid

I)oinl is evolv('d using the informatiot_ from tilt" newly COml)ut('d ""X'" grid l>oinls again with a

half lillW-Slel'J. The set of fill grid pOilltS is tile sallle t'o1' t,he c2ol) and c3o0 MESA schemes.

flw c2oi) scheme's fill l)oinls may be inl_wpolatod using eilher a 2(I) + 1) - 1 orl]er inlerpolant

Imsod upon a 2 × 72 stencil or the,3(I)+ 1) - 1 or,h'r inl.erl)olant has_'d upon a 3 ;< 3 st,'ncil. The'

N ASA/TM-- 1999-209182

95

, i i i

#

::(&,
.,.,,_/[" 1

I
I

i

I

i i i

0

Interior Grid Point

Fill Grid Point

Mapping Direction

t"i_ul'_" 4.:1: .%mpl_' Mapl_it_g For Fill Poi_ts with "2× 2 or :l × :;l s(_'ncils: t:lox t{o(at_'d _- ('_s,'

NASA/TM--1999-209182

96

X X

X X

Figure 4.4: Staggered Grid with C2ol) MESA scheme

advantage to using the smaller stencil is the simplicity of mapping its fill points 1o the boundary

(figure 5.7). Tile disadvantage is that it is no longer possible to overlap t.he stencils-nunlerical

experiments suggest overlap is important to maintaining stability as discussed in chapter 5. In

addition, the c3o0 method is the simplest, useful algorithm and was the first method altenlpled

in this work. Therefore, tile 3 × 3 stencil will be dealt with first.

With this standardization (3 × 3 stencils), it is possible to organize the mapping of the fills

into subprotflems consisting of 3 × 3 groups of grid points (corresponding to a particular slencil

configuration) in which all the fills in each slencil configuration are lnapl_ed to the wall boundary

and a local spatial interpolant is developed using information from only the interior data points

and mapped boundary locations for each stencil configuration.

Recall that the grid points are identified as "'interior", "fill", or "boundary". And the fill

points can be fimher labeled as "needed" or "'unneeded". In addition, the boundary points

can be further labeled aligned with tile wall boumlary or unaligned. The principles discussed

nexl apply t.o any laheling schenle as many labeling schemes have been used in this work.

Each labeling scheme permits a different approach t.o mapping the fill points. For pedagogical

purposes, assllllle the grid points can be labeled into t[ll'Op categories: int.erior, fill. or boundary.

Wit h no constraints impos,'d on the grid poinl s in the 3 × 3 stencil, t.here are :F = 19. 683 I_ossibh '

stencils configurations. Thal is. the stencil as a whole may have 19,683 unique manifeslal.ions.

Each will need a unique mapping for all its fill point.s, if the stencil configuration contains

any. In three dimensions, without natural constraints imposed, the :/ × 3 × 3 stencil has :I '-'r =

7, _i2a. 5.q7.4F,4. 987 possib[e stencil configura! ions.

Fortulmt.ely, there are natural constraints t.]lat, can bo applied thai makes this probh_nl

traclab]e.

A melhod similar t.o Waltz's procedur,' for synd_olic constraint propagation [120] provides

NASA/TM--1999-209182

97

a wayof reducingthe possiblestencilsto a surprisinglymanageableset. As is usuallyt,he

casein artificialintelligenceapplications,thechoiceofrepresentationofthe1)roblenlcarlassist

its solution.Ill thiscase,a successfidrepresentationof thestencilconfigurationsis in a tree.

Tire treedatastructure'sleafnodesareNOT labeled,but it's branchesARElabeh'd.This

datastructureefficientlystoresall possiblestencilconfigurationsill its treebranchstructure.

and enables a recursive building and pruning a.lgorilbm lo efficiently find all possible stencil

configurations. This tree data structure shall be referred to as the Sl.encil Collstraint Tree.

'File locations of the grid points ill a stencil are labeled in row-lnajor order starting with the

bot.tOlll row as S]lOWll ill tigure 4.6. These labels uniquely identify each gri,I point's location

within the stencil. A branch ill the stencil const.raint tree represents both a grid point's position

and its label. The branches are organized into groutys of three. Each group represents a particular

grid point location. The relative position of the branch within a particular group of three

branches det.erlnines the grid points label. If l.he branch is the first, branch ill ils group, il

represents an interior point. The second branch ill tile group represents a fill point. And the

third brallch in tile group rel)resellls a boundary point. For example, in tigure 4.5 all possibl,,

branch numbers for a 2 x 2 stencil are shown. A branch llUll/l)er of 7 is ill position 3 and has

label 1. According to figure 4.6, position g corresponds to the top-lefl grid poinl in the 2 x 2

stencil. Since it has label 1, it is an interior grid point as well. Similarly. branch number 12

is in posit.ion 4 and has label 3. Therefore this branch number corresponds to the top-right

grid point being a boundary grid point. This branch numbering schenle can be applied to any

size stencil with ally numher of grid point labels. A given branch A will be connected to other

branches B in the tree only if the other branches represenl grid points _hal are adjacenl t.o the

grid point represeuted by branch A. In this way, the stencil constraint tree succinctly represents

a giveu stencil's topology aml all it's configurations. A_ example stencil constrainl tree with its

t)ranches labeled is shown ill figure 4.7.

As discussed, the munl)er of stencil configurations is enormous if all configurations are al-

lowed. I:orl.unately, tile natural constraints in l.he problem can be exploited I.o reduce the size

of the stencil constrain! tree. ,qomeoftlle natural constraints are:

1. Each interior point no,s! haw' no boundary types a(ljacenl to il.

2. Each fill poim musl have a boumlary poil_l a(ljacelll to il..

NASA/TM-- 1999-209182

98

t 2 3 4 Positioil

1:23 1:23 123 123 Label

123 4 5 6 78 9 101112 Branch

Figure 4.5: Stencil ('onstraint Tree Branch Numbering Scheme

3. Each boundary point must have no interior types adjacent to it.

Those constraints can be applied during lhe construction of lhe stencil constraim tree. For

example, in the :2 x :2 stencil with interior, fill and boundary grid point types, natural constraint

nulnber 2 implies that a branch labeled 11 (it's a fill grid point) MIWT be connected to a

branch labeled 3.6, or 9 (a neighboring boundary point). Also. the free structure itself can be

exploiled during its const, ruction t,o form additional natural constraints that significant ly reduce

ils growth. This is an algorithm in which the parenls learn fl'om the children t,o avoid producing

too many children!

4.3.1 Building the Tree

Assume we are interested in building a stencil constraint tree for the :2 x 2 stencil with the

assumplion that grid position 4 is of interior type and l ha! each grid point is either an inlerior,

fill, or boundary poinl. Every node will have at most 12 branches as shown in figure 4.5. A

<'O[ll[>]eted stencil constrainl tree showing all possible stencil configurations with an interior grid

point in the top-right posilion is shown in figure 4.7. The mlmber of leaf nodes on the bol|,onl

of lhe tree equals the number of possibh' stencil configurations (_ in this case) Illlder the given

aSSlll/lpl lolls.

Notice in figure 4.7 tha! only lhe branches are labeled and thai it has a free deplh of four.

which corresl)ollds to the nlllllber of grid points in |.he stencil In addition, the firs| level contains

only branches corresponding to grid point position 4, |.he second level contains only grid poin|

position 3 I,ram'hes, the third level contains only position 2 branches, and the fourth has only

position 1 b,'a,whes. A 3 × 3 stencil wouhl haw' a tree depth of nine and a 3 × 3 x 3 slencil would

have a stencil constraint 41'e<' dept.h of'27.

NASA/TM-- 1999-209182

99

789
45 6
123

21 22 23 24 25
16 17 18 19 20
11 12 13 1,'1 15
6 7 8 9 1 (J
1 2 3 4 5

Figtlre 4.(i: Stencil Grid Positiou I,al)els for N---2, N=3. alld N=5

7 8

Figurt, 1.7: Steu('il ('oustraint _l're(,, N=2. Assullle Positiou 4 is au [uterior (;rid Poin!

NASA/TM--1999-209182

100

1 2 3 4 ._) 6 ? 8 9 i0 ii 12

Figure 4.8: First, Node Expansion of Stencil Constraint, Tree

Building this tree is done by starting a(the top of the tree. Branch 10 falls between 10

and 12 making it the fourth group of three branches as shown in figure 4.5. so it corresponds

to grid position ,1, the lop-right of the stencil. Within that group of 3, it is tile first I)ranch.

so it corresponds (o label 1, interior. The first I)ranch represents the given assuml)(ion of node

-t that it is of type "interior". Since it is all interior node, it cannot t)y natural coL,straint

mnnt>er 1 have neighboring nodes of type "'bouudary" (label numl)er 3 in figure .1.:3). If (.here

were more assumptions, such as the top-left position is a fill point. (hen an addition branch

numt>er 8 would I>e on the first level of the constraint tree. The current branch numl>er 10 in

ilL(' lop hwel of lhe tree constrains the choices of the I>ranche_ in level :L In particular, branches

3,(i,.q,12 are removed from consideration in level 2 of the tree since (he I)oundary points cannot

be adjacen! 1o the interior poims. In addition, an additional constraint is imposed to preven!

repetilive loops in ILL('tree. Specifically, a I)arent node cannot r(,l)(,al its OWll position numl)er

or that of its ancestors. Therefore, branches 10, 11, and 12 are also removed from consideration

in level :2 of the tree. The first node in figure 4.8 may only expand branches numbered 1.2A.5.7.

and 8. The nuLLLbering ulldel'lleath tilt' IIodes ill the figure corresponds to ILL(,branch's number.

Wilhout tile nalural constraints, all branches (1 through 9) would I)e expanded.

The tigure ,1.7 is the contpleted stencil constraint tree and therefo,'e does not show branches

1,_,-1, and 3 since they are later pruned in a post-processing step that remow's redumtancies.

Brancl,es 1 and 2 correspond to grid point position 1. The chihh'en branches (level 3 aml 4)

underneath these branches (lewq 2) will not contain grid point position 4 (I)ranches 10.11.12)

since ILL('tirs(lew'l determined it already, nor will lh('y contain branclles rel)reselLling i)osition

1 since the set'oral h'vel has delermined i). The suit-trees under 1)ran('hes I and 2 of lew'l :2 (cor-

r('sl)omtil,g to position 1) are recursively constructed using the same t)rocedurc for the ('Llrrelll

I>arelll I)ranch. Afl('r these suit-frees are exl)anded. Ill(') contaill all l,ossil>h' I)erLlllllatiolls of

NASA/TM-- 1999-209182

101

the remaining grid positions (2 and 3). The permutations represented in !lie sub-trees will be

restricted under the assumptions of its ancestors branches, parent, and grandparent (level 2 aud

level 1), in the constraint tree. The branches that were not expanded in these !.we sub-trees

represent impossible labels for grid positions 2 and 3, under the assumption that grid position 4

is an int, erior point. The set of impossil)le labels is passed fl'om each chiht to its parent branch.

once the child has completed constructing its sub-tree.

This list. of impossible branches is passed t,o the next chihl on level 2 that represent.s another

grid position (branch 4 in tigure 4._). Branch 4 on hwel 2 still has the same parent, branch (10) as

branches 1 and 2 on !.he second level. The (llliOll of't.he set. of branches contained in the sub-trees

of branches 1 and 2 represent all possible perlnmatiol_s of grid positions 2 and 3. it would not

l)ei)ossibh _ for grid posit.ion 2 or 3 to be lalwled type 3 (boundary) since branches 6 aml 9 do no/

occur ill either of the sulk-trees under branches 1 and 2 of the secom/ hwel. Therefore. tile list of

illegal branches passed to the next chihl (branch 4. level 2) includes (6.9,10,11.12). Therefore,

the branch lltlllll)eI" _1 Oll level 2 builds its sublre,' utilizing constraint inforlnalion fronl it.s h'ft

sibling branches. It's parent, branch 10 on level 1 receives lids list. when the sub-tree under

branch 2 on level 2 is completed. The parent branch ilion passes !.his information to branch 4 on

[eve] 2. If branch 4 were one of the illegal branches, then the parent, branch 10 on level l wouh[

uot expand branch 4 on level 2, trot instead woahl skip to bratM_ 5 or the]text legal branch.

After branch numbers 4 and 5 have oomph'ted constructing their subt rees, additional illegal

branches may be found. The subtrees under branches I and 5 (on level 2) represent all possihle

values of grid positions 1 aml 3 cons|rained by the illegal branch list from the branches 1 and 2

on lewq 2. These additional illegal brallches are added to !.he ¢/irrell! list all,,| passed tr) t.lw next

group of branches in level 2 (branches 7 and 8). Note that it. is possible to pass !be additiol_a]

illegal branches to the already completed children on tlw left and prmle their subtreos, but this

was not needed in this work. Once the chihlren on low'l 2 haw" construct_'d their sub-trees the

stencil constraint tree is completely built. All sul_trees are built using the same recursiw' preorder

traversal conslruct.ion with nat.m'al constraint propagat.ion among siblings. Each recursivo call

returns a list of illegal branches that the parent receives from each chihl. Th," parent ahvays

pass,,s on this list t.o the next chihl created.

The stencil constrain! tree now contains all possil)le stencil conliguratioits in its structure as

shown in figure 4.9. Each contigurat ion is ['ound by simply t ravorsing lhe !re,' froln top to bottom.

NASA/TM--1999-209182

102

10

2

Figure 4.9: Unpruned Stencil Constraint Tree

Each unique path represents a possible stencil configuration. However. the tree as currently

constructed has many repetitiw" solutions. For example, in the _ × :2 stencil constraint tree in

figure 4.9, the first branch traversed in any path taken will be grid position ,1, label 1 (on level

1). It is possible for grid positions ;2, 3, and 4 to 1),_ latMed 1 (interior) as well without violating

the natural constraints. This corresponds to branches (1A,7,10). According to lhp unpruned

stencil constraint tree there are 6 paths that give the same result: (10, lAX),(I(L1,7A),(10,-t,7.1).

(IOA,I,7), (10.7.1,4), and (10.7,,1.1).

This inetfici,mcy is elinlinaled by pruning the tree as follows. Start.ing froll] t.]lO fop of the

tree, remow, all branches from the tree that. do not correspond 1o grid position 4 on the first

h'vel. In this case. this does nothing since only I,ranch 10 is on the first, level. Noxt., remove

all branches from the second level thal do not correspond 1.o node 3. This removes branches

[.2.-l.and ,5 and their Sltl)trees. Repeat. this for t]le rest. of the levels. Afler this, the stencil

constrain! tree is]q'Ulled and showu in tigure 4.7. The tree now efficiently rq_resents all stencil

configurations. This in'uning process requires that 1.he order of grid posit.ions sele('l.ed for pruning

]_t' SllCh lilat they are t.opologically connected iu the tree. For examph,, it] tile [{ × :] ('ase grid

positiou -t is not connected to grid positiou (] and so should never be placed together iu the

pruning list. Failure to do this results in a destroyed stencil constraint free.

This l>rum'd tree requires only ,l tests to clef.ermine if a given stencil contigurat.ion is correct

by simt_l.v ll'averSillg the follr hwels of the tree from top t.o t_ol.lOlll. [f a path froll| lop Io })ottol|l

malching the stencil configuration does not exist., the st.eucil configuration is incorwct. Tlw ;2 × 2

stencil with an interior grid l,ohkt in the tol>righi has a lot.;-|[of eight possil)le configurations. If

NASA/TM-- 1999-209182

103

all eightconfigurationswerestoredasarrays,andeachgridpointwasnaivelytested,it would

take:{2tests t,o reiect a given 2 × 2 slencil. This represents eight times more efforl than using tile

sl,encil constraint tree. 'File savings are significant for this simple problem, but are absohltely

essential for more complex stencil configurations in three dimensions. For example, a :2 × 2 × 2

stencil in three dimensions requires only 8 tests if the st,oncil constraint tree is used compared

to (2 s x 8 = 2048) for the array method when il, is assumed lhe corner grid poin! is of type l,

"interior". Also notice thai withoul natural constraints there are (3s=6561) permutations of

the 2 x 2 × 2 slencil configuration. Employing natural constraints and propagal, ing them in the

stencil constraint l,reo reduces lhe comph'xity of mapping the fill poinls.

The ahility to e[ficiently test all stencils used for the fill points is imporlanl. In some cases,

lhe (:AD inlmt geolnelry tih' lllay be incorrecl, lhe geometries" curvat, ure illay be I,oo sl,eep for

l,he given grid resolution, or a degenerate case has occurred thai lleeds human assist,ante. By

quickly lesting all stencil configurations across the entire comlml,ationa] domain, lhese hard to

identify problems are quickly dealt with.

Nole lhat representing lhe stencil configurations in an undirected graph such as the sl,encil

constraim tree without prol)agating the natural constraints resu.lls in an NP-(lomplel,e algo-

rilhm. This is because all paths lllllsl be /,raversed such thal, all nodes are visil,cd as in the

Traveling Salesman Problem [20], which is an NP-(k)mplete problem. Forl,unately, the number

of edges in the slencil ('onstrainl tree decreases as lhe tree is built due 1o the prolmgalion of lhe

natural consl,rainl,s.

4.4 Recursive Boxes

The recursive algorithm just described was implemented in Mathematica which is itself de-

signed to operate efficiently with frees. All Mathelnatica expressions are represented internally

as frees [122]. Unfortunately, the recursive stencil constraint tree algorithm described in sec-

lion 4.3 t,ook too long 1o run on stencils with widths larger lhan _\" = 2. Rat, her than improving

performance by ilnl_lementillg this algorithm in a lower level language, an improvenlenl in perfof

tnallce was achieved with a ln|el,a-algoril hnl thai, made use of the consl rain! lree algorithm. This

"'ineta-algorithm" recursively calls upon the sl,encil constraint tree algorithm to solw" smalh,r

sub-probhmls and then collects l]les_ _ results to form a global solution.

NASAJTM-- 1999-209182

104

7 8 .9 7 8 9 I _ 9 7_

Box 1 Box 2 Box :l Box 4

Figure 4.10: Stencil Grid Box Position Labels for N=3

The idea is to divide up the stencil into overlapping 2 x 2 boxes and to solve these boxes using

the constrain! tree algorithm just described. The advantage to this is that the pruning process

happens after each 2 x 2 box is solved; This results in a far slnaller tree during its conslruct, ion.

The boxes overlap so that the result fl'om one box call restrict the neighl)oring boxes via l he

natm'al constraints of the problem (The natural constraints only apply to neighl_oring grid

point s).

For the N=2. 3, and 5 two dinlensiottal stencils there is 1, 4, and 16 overlal)ping boxes

respectively covering the entire stencil domain. In figure 4.10 the four boxes of the 3 × 3 stencil

is shown. The labeling of the 2 x 2 boxes is done ill the sanle nlanner as t,he imlividual grid

positions were labeled for lhe constraint, free (row major order, left lo right, I:.ot, lOlll row first.

but in overlapped groups of four).

Finding all possible stencil configurations for the 3 x 3 st,encil is achiew+d by starting with

any of the boxes in figure t.10 and proceeding in a recursiw + way to solve all the boxes. It,

is iml+ortant that the list o[" boxes are chosen so that each successive box is overlapped by a

previous box. In the case of a 3 × :_ stencil, all four boxes ow'rlap each other and so arty ordering

is al+t,ropriate. A box is solw'd by simply calling the stencil constraint tree algorithm 1o lind all

possible slencil configurations for the 2 × 2 se! of grid points it, the box.

Each 2 x 2 box nlay I)e restricted in two ways. First, one of its grid points may I)e assumed

to be of sonle l,ype (interior, fill, or boumtary) in which the const, raint tree algorithm can easily

find solut ions. Second, a diagonally neighboring box will inl,roduc<, natural constraint,s as shown

in figure 1.11.

For <'xample, solving the 3 × 2{ stencil for all possibh" configurations in which lhe center grid

point mmd+er 3 is a fill point (l>ranch lmmber 14) using the l{ecursiw' Box method couhl proceed

as follows. First, the stencil constraint tree algorithm is calh,d with th<, assumption that grid

NASA/TM-- 1999-209182

105

pointlocation4 isof t,ype2, "Fill" (Note that tile local grid location labels are based on the

2 × 2 stencil relative to each box). All possible configurations are found for box l in figure 4.10.

Next, for each 2 × 2 stencil configuration in box 1, the set of l_ermissil)le stencil contigurat, ions

for box 2 is then found [)3' again calling the stencil constrainl tree algorithm. For each stencil

configuration in Box 1, the configuralions in Box 2 will be based upon the two grids in Box 1.

Its local grid locations 1 and 3 are defined by the values ill Box 1 at its local grid locations 2 and

4 (case 7 ill figure 4.11). Therefore, in solving Box 2 the constraint free algorithm is initially

given a list. of illegal branches as described in sect.ion 4.3. The illegal branches are simply those

branches representing local grid positions 1 and 3 t.hat are not of tile correct type defined by

Box 1 (4 illegal branches total}. Next, for each 2 × 2 stencil configuration found for Box 2, the

stencil constraint algorithm is applied to Box 3. This time, Boxes 1 and 2 are already defined

and will restrict the stencil configurations in Box 3. In particular, Box 3 will have its local grid

position nlttllbers 1 and 2 defined by Box l's local grid position ll[lnlbers :{ and 4. 111 addition,

box 2 has a defined local grid position nunlber 4 that will restrict the choices of the neighboring

grid point in Box 3"s local grid position mllnber 4. Therefore, if Box 2 has an interior point

in its upper right corner, then box 3 may not have a boundary poim in its upper right corner

(tree branch 12). When the constraint tree algorithm is called, it, will nol only haw" a starting

list of illegal branches from the two defined grid points from box 1. it will also be given the list

of illegal branches int.roduced from the effect, of Box 3. This siluation is represented by cases 4

and 5 in tigure 4.11. Next, for each configuralion found in Box 3, which was restricted by the

definitions and influence of the configurations in Boxes 1 and 2, the stencil constraint algorithm

is applied to Box ,t to find all of its permissible stencil configurations. This time, Box 4 will

have only 1 undefined grid point (its upper right position 4). The constraint tree for Box ,1 will

have illegal branches (6 illegal branches) corresponding to the 3 detitled grid points. This case

call be represented as the superposition of the 3 cases 5, 6, and 7 in figure 4.11. After these

procedures, all of the 2 x _2 stencil conligurat, ions ill the boxes have been found and the list. of all

possible 3 × 3 slencil configurations is gathered 153 simply unwinding the l'ecursive calls as shown

in figure 4.12. The set of 2 × 2 stencil configurations for Box 4 which was rest.ricled]53' each se!

of 2 × 2 stencil conligurat ions in Boxes 1.2. and 3 of figure 1.10 may be combined to provide a sol

of 3 × 3 stencil configurat ions tbr the en!ire stencil. For example, in figure 4.12_, each mmll)ered

box corresponds to a specilic 2 × "2 slencil configuration for the aprropriate box in figure ,1.1[).

NASA/TM--1999-209182

106

m .!

1 2 3

[] = PreDefined Shared Grid Point

• = PreI)efined (;rid Point
x = Unknown (;rid Point

= Neighbor Influence

 iiiiiiii)
_. _..i

4
..".............. i

6
,_l_... "',"..t.."

0 7 8

Figure -1.11: Box Recursion l_Iethod: 8 Neighboring Box (:ases

Across tile top row of boxes ill figure 4.12 the Boxes 1, 2, 3 and 4 form one coral)]ere 3 × 3 stencil

configuration. Now, backtracking one step from Box -i back to Box 3 and then taking the next

path to tile second Box nmnber 4, a second 3 × 3 stencil configuration is found. This process

repeats until all possible 3 × 3 stencil configurations are determined. This process is efficient

since the constraint tree algoritlun in applied only t,o small "2 × '2 stencil sub-problems.

Notice t}la| lie[all eight possible two-dimensional cases ill figure 4.10 were used in solving the

3× 3 stencil in this examl)le. The ordering of the boxes and the size of the stencil determine which

o[" the eight Box l/ecursion method canes are enll)loyed. Larger stellCilS will still be subdivided

into smaller, overlapping 2 × 2 nub-prol+,ms.

4.5 Symmetries and Simplifications

With Ill,' tools described in the previous two sections, it is possible to examine ill more detail the

structures of all l)OSsible stencils. It is important to quickly reject inq)ossibh" stencils from con-

sideration so that a systenlalic mapl)ing may I)e developed. Ill nlost applications, relatiw_ly few

of all the possilfle stencil configurations are encountered, but it is still necessary to exhaustively

handle all cases. Once all the stencil configurationi are known it. nlay be l)osnil)le to assign a

NASA/TM-- 1999-209182

107

1 :2 3 4

Figure'_t.12:Recursively(oll_'<tmg2 × 2Sub-Slencil(ontguratlons

specificreal)pingto eachcas_'thai l)rovMesa linearlyconsistenlsys|.emforspatialinterpolation

at.eachfill point.

()he"approacht.oachieve'thiswasIo findall possiblestencilconfigurations for a 5 × 5 stencil

in which the only assuml)t.ion is that the center grid point location 13 was a fill point. Then. for

each of these configurations simply map any fill point in grid point locations 7._.9.12,13,14.17.18.

aml 19 to the, I)oml(tary points in grid point locations 1.2.:1,,t.5,10.15,20,25,21,23.22.21.16, l l, and

6. Each fill point needs to t)__ mapp_'d to a unique grid 1)oint location and no mor_' than thr('_'

grid points in lh_, n_,w mapped stencil are l)ermitt_d Io be collinear with resp('ct to t.h_ _ x and

y axis. The fornler ('all only J)e satisfied if enough boundary points _xist. The latter must I)e

(_xlmrimenlally (t_q.(-rmin_d using the tools of the previous sections. [!nforlunately, it was foml(I

thai more fill grid poinls than boundary grid points occurr(,d in many r(_alizabh _ stencils. If

two fills ar_'mapped to t.h_TM same aligned boumlary grid l)oint, il ix possil)h" for hoth])oints

to intersecl. This r_(htces t.h_" spatial intt, rpolanl's linear syst_'m to O1/]V b degree's of fr_'edom

instead of the' 9 r_'quir,_d for a lwo dimensional lim'ar syst(qn on a 3 _, 3 st_'ncil to I)(, solw,d. If th,'

bOulldary grid t)oinl is tmalign,_(l with l.h[_ physical boundary th('llit. is 1)ossibl, ' to map lnullip],"

NASA/TM-- 1999-209182

10_

fillslowardsthesameboundarygridpointwithoutan intersectionoccurring.Thenumberof

possiblestencilconfigurationsis quitelarge,evenwith tile naturalconstraintsapplied.For

example,a3×3stencilwiththecentergridpointnumber5assumedto beafill I)oinlhas&456

legalstencilconfigurationsthat needt.o]mnlapped.Thismapl)ingideallywouldonlydepend

onthe3× 3stencil,but to verifythisallpossiblest.encilsneedto begenerated.It wouldtake

11(laysto computethis largerset.Wilhou!constrainlsimposedthereare2.-'4= 16,777,216

stencilsto consider(eachl)ointisa boundaryor not). Evenwithconstraintsimposedtheset

ixstill largerthanwill actuallyoccurin apl_licationssincetheenterstencilpoinlsareactually

constrained by their oulside neighbors which are not known without including all 7 × 7 stencil

contigural ions.

Fortunately, il is possible to reduce the set of possible stencils by al_plying symmetry and

additional assumplions t.o the stencils. A key assumption is thai no stencil will be complelely

enclosed by solid walls (ie. a st.encil will have at least one neighboring and overlapping stencil

ill the geometry). However. if it is completely enclosed, then locally increase 1he grid resolution

until at least two overlapping stencils tit within the enclosed area. With this assmnption, a

:I × 3 stencil will have all interior grid point oil al least one of its edges, and a I_oundary

grid point on the opposite side. The center will always be a fill point. The assuml)tions are

shown ill figure 4.13. At least one of those cases in the figure are assunled t.o occur in every

s|encil. Assumptions S1, $3, S;), and $7 have 36 possible slencil conligurations each (using

the Box Recursion method): And assumpt, ions $2, $4. $6 and $8 have 144 configurations each.

The t'acl the odd and even nunlbered assuml,l.ions all haw, the sallle uulnber of configurations

suggests there is synmietry ill this prol)lem. The union of all configurations ('orresl_onding 1,o

assu_nptions %7 are in figure 4.20 and those corresponding t,o assumplions $8 are in tigure 1.21.

In those figtlres, the aligned and unaligned boundaries arc treated as identical and result,s in a

total of 61 possible stencil conligura!ions. By rotal,ing these stencil ('onfigurations by 90 degrees

clockwise, then the solution set to a,ssmnt)tions $5 and $6 ill figure 4.13 is obt, ained. Another 90

degree relation provides the S3 and $4 solutions; AiP,] olie lliore 90 degl'e(_ rotation provides tile

,ql and S2 sohilions, Nolo that the set of sl,encil coilfigllraliolis after each rotalion has 7 stencil

configurations in common with its ere-related configurations. This suggests the symmetry is

not perfect, but lhal "s line since the nnnlber of slenci] conIigurations is now manageat)le at 61

cases The unioll of stencil configuration sets for all eight assillnl>tiolis (SI. $2, $3. $4. $5, S6,

NASA/TM--1999-209182

I09

SI $2

$5 $6

B = Boundary Grid Point Type
o = Fill (;rid Point Type
• = Interior (;rid Point Type
x = Ally Grid Point Type

$3 $4

$7 $8

Figure 4.13: No Wrap Assumption: 8 Cases

$7 and $8) has 216 contigurations for the 3 × 3 problem when unaligned and aligned houndaries

are considered the same.

4.6 Ulfique Mappings

With the set of possible 3 × 3 stencil configurations now minimized, further detailed study of the

mapping problenl is possible. The real)ping probleln is to find a se! of directions (unit vectors)

for each stencil configuration that will intersec! with the solid wall edges. The seleclion of lhe

direction vectors needs to satisfy the following mapping criteria:

1. Maximize the accuracy of the spatial imerpolanl of the slencil by finding the ('losesl wall

boundary for each mapl)ed grid poinl.

2. Expand outward from the center of the 3 x 3 stencil 1o maintain the same (TL conditions

for numerical slabilily.

3. lllsure thai never mor_" lhan 3 grid points are collim'ar after the mapl)ingoccurs to provide

a li,warly consislenl system (br spatial interl, ob_tion.

NASA/TM-- 1999-209182

110

Tile assumption that a stencil will not be wrapped by the wall geometry was described ill

the last section. A consequence of this assumption is that any legal 5 × 5 stencil with a fill point

in the center grid position ltUll)l)er]:{, will contain a ::_× 3 sub-stencil that contains no boundary

grid points. And, all of tile 9 possible sub-stencils (3 × 3) will contain tile center fill point of the

5 × 5 stencil. In figure 4.14 notice that the $8 case has no '" B'" points in the bottonl-right corner

3 × 3 sub-stencil. Similarly, the S7 case has no "B" points in the bot, tom-cent,er 3 x 3 stencil.

The importance of this is that all grid points can be expanded out to meet the second

mapping criteria. The ('FL constraint would require a smaller time step if t,he stencil were

made smaller. And. the third criteria could not be assured if the unaligned boundary points

were mapped to an aligned position on the wall edge. This is readily seen in figure 4.15 in which

a simple line parallel to the x-axis is the only geometry. If lhe fill point is taken as the center

of any 3 × 3 stencil there will always be 6 cotlinearly mal)ped grid points (3 mapped fills and

3 mapped unaligned boundaries). Note that the unaligned boundary points in lhe figure 4.15

wouhl be iual>ped to the same location as the fill points. How,wer, if the fill points are considered

the cent.er of the .5 × .5 slencil then assumptions $2, $3, and $4 in figure 4.1.'} are true. In this

case, there will be at. least one 3 × 3 stencil that. cont.ains no I>ouudary points and the fills may

be safely mapped as shown in the figure 4.15. and the remaining 6 interior grid points do not

need to I>e mapl>ed.

Only the stencil configurations resulting from assumptions $7 and S_ need t.o l,e mapl>ed

however. All other Inapl>ings are deduced by rot.aling lhe direct.ion w+clors about, the center of

the .5 × a stencil Ul> I.o a maximum of 3 t.imes (.q() degree rotation each) m+til the rotat.ed $7 and

$8 assmnptions align with the l>articular stencil configuration as discussed in sect.ion 4.5.

Each of lhe svb :'}× 3 slencils in figure 4.14 has one fill point., two interior grid poini.s and six

grid points that are not a I>oundary type. The remaining 6 grid t)oinl.s may be either a fill point

or an interior point. Therefore, there are 2 o = 64 stencil configurations lhal need a mapping

uuder the N7 assulnption and anot,her {J4 st,eucil configurat, ious that need a iuappilig luider the

_ assuuiption, li ix l_Ossible to shnplify this inappiug task furl, her by not, ing the additional local

syllililetry foilnd ili the 3 × 3 sul>sieiicils. Tile S_ sul>stenci] is syllliilelrica] across tile iiiain

diagonal and ihe $7 sub-steuci] is syuunet, rical down llie niiddle verlical as showu in figure _I.I/L

Across this liue of sylillliel, ry, the saliiC sot of nial_piugs will occur. II is therefore uecessary I,o

only derive a nial>ping for ono-half of the 3 > :/ sul_-stencil. Ouiy 3 grid poinls ari, uliklloWli Oll

NASA/TM-- 1999-209182

111

e= Interior Grid Point Type
o= Fill (;rid Point Type
Z= Not. a Boundary Grid Point Type

Unspecified Grid Poin! Type
B:::: Boundary (]rid Poinl Type

XBXXX XXBXX
XoZZ ZoZX
XZo Z Z" Z X
XZZ. Z- ZX

$8 $7

Figure 4.14:5 × 5 st.(mcil configurations under $8 and 57 assumptions

O0 0 0 0 0 0 0 • • • • • • • • • 0 •

0 0 0 0 O0 0 0 0 • • • • • • • • • 0

BBBBBBBBBBBBBBBBBBB

Figure 4.15: Too Many ('ollinear (;rid Points When 1.!naligned Boundary Poinls Ne_d Mapp,'d

NASA/TM-- 1999-209182

112

o= Interior (;rid Point Type
o= Fill Grid Point Type
Z= Not a Boundary Grid Point Type

Unspecified Gr_d Point Type
13= Boundary (_rid Point Type

 xxxxl lxBxx
B x.x_x.l X..la.x_xx\zz/ x

! z,zxx!z%z / :.z? zx
x _ zXo.j _, z !x

$8 $7

Figure 4.16: Sub 3 x 3 stencil symmetry under SS and $7 assulnptions

one side of the line of symmetry and therefore at ntost 23 = 8 configurations need to I)e mapped

per the $7 or S_ assumption. The mapping on other side of the sub-stencil is found by rotating

the direction vectors around the lille of syntmetry.

4.6.1 Mapping the $8 Cases

A real)ping will I)e developed for the t|l)per triangle of the sub 3 × 3 Sg stencil in figure 4.16

that may t)e used for the lower triangle as well. (;rid position 13 of the 5 × 5 Sg stencil will

-I 1) The fixed interior grid point locations 5always be assigned unit direction vector (_2_,' ,/5_, "

and 9 never need to])e mapped to the boundary since they ah'eady contain the aciual data to

t-' used in [k)rming the spatial interl)olant. This leaves grid positions 10,14. and 15 (refer to

as plt/,pl4.and 1)15, respectively) to I)e mapped. When i)14 and I)15 are not I)oth a fill, ill(,

mapl)ing only del)ends on plO. pl4 and I)15 which can I)e of either interior or fill type (in this

case Ill(' inapt)[rig does not depeml Ul)On other grid points since the natural constraints dictate

what they already must I)e). In addition, it is not possible for plO to t)e type fill and 1)15 to

I)e type interior sinmhaneously due to natural constraints. And, when 1)10, 1)14, and 1)15 are

all interior grid points, no mapl)ing is needed. For the cases when 1)14 aml p15 are t)oth tills,

it is necessary to use the information from plS, pig, and p20 to determine the real)ping. See

tigure-i.17 for all the mal)l)ings of the Ul)l)er triangle of tile 3 x3 $8 sul)-stencil in figure 4.14. The

llot.ation used in tigure 1.17 is the same as in figure 4.14. The arrows imlicate whicll direction

the Jill point is to be mal)ped. Notice that tile first two rows in figure 4.17 depoml upon the

NASA/TM-- 199%209182

113

BZZB

o o

BZZ B

0 _0

.¢!

o

BBZ B

o o

BBZB

o o

OOO O0

!..............................

BBZZ IBZ BZ

o o o o o o

iB B Z Z iB Z B Z

0 0 0 [0 0 0

o i o

0 • • 0 • 0 [

• o i

BZ BB BBBZ BB BB

o

BZBB

o

B B B Z B B B B

0 0 0 0

0 0 0

_iiiii= Possible Degenerate SS ('ases

Figure 4.17: SSSymmetrical Maplfing: 18 ('ases

type of grid point at pl0, p14, 15, p18. plg, and p20. The hottonl row only depends upon pl0.

p14, and p lS. Those cases marked degenerate in figure t.17 require [roman assistance since they

may nol work on all geometries. For example, the degenerate case in tile top row of figure 4.17

may have a problem with its middle fill point. The olher two fill points will definitely map to

a nearby wall boundary, but the middle point could conceivably nol intersect a wall boundary.

Clearly, this is no! likely to hal)pen since geometry tends to be conlilmous and well-structured.

It is most likely that the wall boumlary grid point is at the p22 or p23 grid point. Rather than

izlcreasing the comph'xity of the mapping scheme at this time for these very rare cases, it seems

acceptable to let tile lmman provide occasional assistance. Note that there are 18 mappings for

the upper triangle of the 3 × 3 $8 case. If the local symmetry were not utilized il would be

necessary to ¢teternmw the mappings for 18': = 324 separate stencil configurations. While not

intractal)le in two dimensions, this would become a nlore serious issue ill three-dimensions.

Flipping the 1_ maplfings in figure 4.17 across the diagonal symmetry line provides the

lnalqfings for th__ other half of the ;/ × 3 sub-stencil.

NASA/TM-- 1999-209182

114

4.6.2 Mapping the $7 Cases

A mapping is found for tile left side of the sub 3 x 3 $7 stencil in figure 4.16 using the same

procedures as for tile $8 case just discussed. However, tile line of symmetry is now verlica[

instead of diagonal. Grid position 13 of the 5 x 5 $7 stencil will always t)e assigned unit

direction vector (0, 1) since by the $7 assunlption a bottndary grid point is directly above it.

The fixed interior grid point locations p3 and p8 never need to be mapped sittce they arc interior

grid points. This leaves grid point locations p2, p7, and p12 to be mapped. See figure 4.18 for

all the real)pings of these grid points under the $7 assumption. The $7 assumption has over

twice as nlauy cases as the $8 assuml.)tion (40 vs, 18 cases respectively). As in the SN cases.

using the local symmetry saves the eft'or! of mapping the (40'-' = 1600) cases that would occur

if syrtrrltetry were llot used. Again, significant simplifications in the mal_ping problem occur in

three-dimensions when synnnetry is applied.

4.6.3 Handling the Degenerate Cases

The degenerate cases that are outlined in figure 4.18 and figure 4.17 are designed to new'r map

more than :{ grid points collinearly onto a coordinate axis, but. the solid wall may trot be close

enough to the mapped fill points along lhe direction of the unit direction vector, or may not

exist at all. This couhl result in an interpolation function of lower accuracy than required or

simply not be correct. The direction of the arrows in degenerate cases are se[ected with an

educated guess bul could be made better by including information outside of the 5 x 5 stencil or

using information not directly adjacent t.o tile SS sub-stencil in figure 4.14, but inside lhe 5 x 5

slenci]. The degenerate cases may be remow_d by increasing grid resolution to srnooth out the

crevices arid btrtrlps.

There are some situations in which tire $7 or $8 no wra l) assuml)tion is not valid. Shown in

figure ,1,19 is a geometry in which neither the $7 nor $8 assulnption is true for" lhe case when

the Z's are fills arr(I the center of the 5 x 5 stencil is at the larger circle. 1! is characterized by

little I)uml)S no bigger than the grid spacing which occur' in a corner area. Fortunately, ('AD

sy:'.;|ertts represertl their curves with smooth parametric descriptio,_s lha| will trot lypically haw_

tiny burups. This wouhl he one case in which human assistance is necessary, or a relaxation of

the S7 and SS assumptions is needed. Since these cases are so rare, human assislance seems

NASA/TM--1999-209182

11.5

Z BBB

o o" c-_B

• • o--_B

BBBB

_B
• • _B

Z Z 13 B B Z B B

o o'o--,-B { o'o-_B

• ° o--.-B • • o--_B

Z BBZ BBBZ Z Z BZ BZ BZ

o o _B g g _B o o _B g o'_B
• • _B • • _B • • _B • • _B

Z BBB

0 0 0 Z

• • 0--4_ IL_

............................. i

z BBZ _,
O O O""_ Z

• . ¢>_W

ZZZ B

• o . o.B

• • O---,_ g

ZZBB

• 0 0---_1_

BBBB

{{o'Z

B B B Z

gg_z
• • o-_B

ZZ ZZ

• 0 • O--_B

• • o--_B

Z Z BB

• 0 0 Z

• • O-'-_B

ZZZB
1¢

• • 0 Z

• • o-_-B

Z ZZ B

• • O--I,- B

ZZ BB BZ BB

,q I¢ z0 0 0 _ 0_0 _¢Z

• • o--,-B • • o-_B

... i

z z BZ _, B Z B zi
o o o-_Z o'o-,-Z

............................. i

Z BZ B i

• • o-_Bi
'.............................i

Z BZZ i

_ o_Bi
• • o-,-Bi

.............................!

Z B Z 13i

{_o'Z

ZBZZ

_ _z
. . o-.-Bi . . _Bi . . o-.-B

.............................. i

ZZZB ZZZZ

o o o Z o • o_Z

.............................. ? , i

Z Z BZ i Z Z BZ
" "ZI! _o_B

• 0 0 ! • 0

• • o.-Bi • • o.-B

ZZZZ Z ZZZ

• • o_B • • _-Z
• • o-_B • • o-Bi

BBZ B

g o-.-B
• • O"-'_ B

BBZ Z

_ o-.-B
• • o-_13

BBZ B

{ { o'Z
• • O--_B

BBZ Z

t _ _z
• • o--_B

i............................. i

iBZ Z Bi

i.. _BI

BZZZ[

t _ _Bi
• • o-.-Bi

............................ t

BZZ Bi

_ o'Zi
• • o-,.Bi

BZ Z Z_

• . o-_B!

_""i

;_ = Possible Degenerate S7 ('ases

Figure 4.18:S7 Symmetrical Mapping: 4() (_ases

NASA/TM--1999-209182

116

more efficient. Or, these rare cases nlay also simply be inchlded with the other mapl)ings but

this was not necessary in this work. All of these special cases may be calculat, ed using the Stencil

Constraint Tree algorithm and llecursiw' Boxes algorithm discussed previously.

If tile degenerate cases are mchlded in the acceptable mapping set bu! with a limit to

the arrow size ilnposed, then acceptably accurate interpolations could still be automatically

generated. Simply restricting the nlaxinmm arrow nlapping length to 2 or 3 grid spacings

will permit the degenerate cases to function correctly, albeit less accurately. In figure 4.22 is

the previously discussed difficult case of figure 4.19 ill which the highlighted fill point has had

neighl)oring fill point changed to a boundary point. By permitting stretched arrows it is possilde

to correctly lllap and create all interpolanl, for this slightly changed system, despile lhe many

I)tulll)S still along tile edges. Some degenerate cases, even with the stretched arrows, may still

no! inlersecl a physical boundary. But. the fill points nlay still be mapped by usil|g an alternate

set of non-degenerate cases. A good examl)le of this is shown in figure 4.23. Notice t,he corner

prol)[etll when nlalch.ing up with t,he $7 cast" as shown, that the last, degellerate S7 nlapl_illg o['

figure 1,18 applies to left side of the 3 x 3 sub-stencil. The arrow extends io infinity, bul afl,er it,

exceeds 2 or :1 grid spacings this cast" would be reject,ed. However, nol, ice that the same sol, of fill

points Illay be solved by using two llon-degenerat, e cases as showll ill figtlre 4.23. The first :{ × ;_

stencil lUnnber 1 in figure 4.23 is all SS case in which all the Z's are interior poinl,s. This slencil

solves tile corner fill point lhat was previously mapped to infinity. Tile second 3 x 3 $7 stencil

mmfl_er 2 easily nlaps the remaining fill poinls. In |his lnalmer, it is possible to avoid degenerate

lnapping situalions I)y I'eplacing l llenl with a]t,ernale non-degenerate stencil nlal)pings.

One of tile strengl, hs of autonlation is that, these lnany decisions can be performed system-

atically aml quickly. Ill addition to avoiding degel|erate cases, it, is inlportant to carefully selecl

the order in which the fill points are solw-d as discussed in sectiol| 5.2.

NASA/TM-- 1999-209182

117

ZZZZ oooo 1
oooZ = oooo
oooB oooB

BBBBBB

o Bo Bo B

ooOoB

-- eeoo B
oeoBB
eeooB

oeo[{H

Figure 4.19: Degeuerate (_ase: No $7 or $8 mat, thing case

Figure 4.2(I: All Possible $7 _tencil Configurat, ions with Fill at, ('eul,er : 16 (_ases

Figure 4.71: All Possibl¢' S_ Slencil ('ollfigural,ions with Fill al (!enter : ,19 (!ases

NASA/TM-- 1999-209182

118

ZZZZ
eeoZ
$ $ 0 F_

B B B B.B:B
o : !B

= @ @ 0 0 =

eeoB
@ @ 0 0 B

eeo BB

Figure 4.22: Degenerate Case: One $8 matching case

ee B
• • B

• • B

• • B

• • EtBB B B

• . **iooo
• @ i@ @ @ !@ • @

• • !..._._._!o • •
1

eeoB

eeoB
.-olB
I I o[B

• +. o_II_.B..B.B B
I.-.--U..'{__)_ io o
i i i
!@ • • El • • i@ •

i++_.._-_..__*__.i_....__.....,.__!.•
2 3

Figure 4.23: Substituting Non-Degenerate Cases 2 and 3 to Renlove Degenerate (:ase 1

NASA/TM--1999-209182

Chapter 5

Solving Near Boundary Grid

Points

The objeclive of the previous chapter was to develop a unique mapl)ing of the fill poinls to lhe

solid wall boundaries. Each fill poin! on tlle Cartesian grid domain is contained within at least,

one 3 × 3 stencil ¢lomain. Fronl within a particular 3 × 3 stencil domain, never more than 3

mapped fill and/or imerior grid points are collinearly localed in a line that is paralM 1o the

coordinate axes. This chapter will take advantage of this property by creating a local spatial

interpolant in each of the ;I × 3 slencil domains. The local spatial interpolant is t,hell used at

each time step to solve the fill grid points.

The domains of the local spatial interpolants that arc- defined on the 3 × 5; stencils for the

rotated box problem are represenled as shaded regions in figure 5.1. The solid circle grid points,

open circle grid points aml letter "'B'" grid I)Oinl,s represent interior grid points, fill grid points.

and boundary grid points, respectively. Each 3 × 3 stenci] domain has a nmnber in the center

o(' it corresponding to the sequence in which its spatial mterpolant is creal,ed and the sequence

in which its fill points are evahlated. The arrows indicate where the fill points are mapl)ed onto

the wall boundaries. ,qome of the fill points arc, contained within two or more stencil domains.

For example, stencil domains 1 and 2 share one fill point. This fill point may use either slencil

domain's local spatial interpolanl. The choice is nol arbilrary however as tile lmmerical slabilily

call I_c' aft'coted as discuss_'d later ill sc'ction 5.:2.

NASA/TM-- 1999-209182 I 19

120

There are multiple ways of arranging the 3 × 3 stencil domains to cover all the fill points.

In [igure 5.3, a numerically stable schenle with lwenly stencils are used for the 32 fill points

as compared to lhe eight stencils used ill (igure 5.1. And in figure 5.2, eight stencils are used

with the same fill point n|apping and stencil domains as ill figure 5.1, but this time the stencil

domains are solved in a different seqllellCe resulting in an unstable scheme. In general, the

mmlerical stability of lhe MESA schemes with wall boundaries del)m,ds Ul)On the location of

the stm,cil domains and the sequence of their evaluation as discussed in section 5.2.

5.1 Lagrangian Form VS. Multidimensional Taylor Series

Form

A local polynolnial spatial interpolation function is found fox" each of the 3 × 3 stencil donlains

(shaded regions in figure 5.1). The interpolator functio,l is a polynomial that is consistent with

the local boundary conditions at. the mapped fill locations and it. is simultaneously ('OllSislent

wilh the interior grid points contained within the stencil domain that it is defined.

The local spatial interpolants are piecewise continuous across the regions of slencil domain

overlap. The mathematical forn| of the local interpolating polynomial call reduce the compu-

lational(,ffort of creating and evaluating it. Fox" example, it. is well known thal using Homer's

form [15] r(_du('es the lltlllll)er of multiplies required to evaluate a polynomial. Similarly. it is

l)ossibl¢ , to reduce the nunlber of unknown t)aramel.ers of the' inl,'rl)olaling l)olynolnial while

maintaining lhe same accura('y by choosing a polynolnial form that best tilts the application.

This sect loll will (telxtonsltralte lhe benefits of using the Lagrangian forms of l.h_' sl,al ial inter-

polants for conq)uting till grid l)Oilll solutions.

5.1.1 Forming the Interpolant With Multidimensional Taylor Series

Each local polyllomial spalial interpolalion function can be formed in various ways once the

fill points are mapped to the wall boundaries. The fill points are mapped in the nlanner of

c]|aplter -1. along a unit. direct.ion w, ct.or to a location on tim physical wall boundary. The

location is det.erlnined by [imlitlg Ill(' intersection o[' the line drawn ill the direction of lth__ unil

v,'('ltor and lh_' l)aram_,tric curve rel)resenlting lth(' bou|ldary. If Ill(' interpolation function is

NASA/TM-- 1999-209182

121

B B B B B

Rotation An(

B B

B B B B B B B 1.5

Fie : 0.392699

B B

B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B B B

B B B B

B B B B

B B B
B B

B B B

B B

B B

1 1.5

B B B

B B
/

B B B B

B B B

B B B B B

B B B B B B B
B B B B B

B B B B B B B -1.5 B B B B B B B

B B B B B B B B B B B B B B

Figure 5.1: Slal)le Salnl)leMapping: Box Hotated _ (!as_"

NASA/TM-- 1999-209182

122

B B B B B B

B B B B B B

B B B B B

Rotation Angle = 0.392699

B B B

B 1.5 B B

B B

B B B B B

B B B B B

B B B B B

B B _ B

1.5 5 0.5 1

B B B

B ! ! I(B

B B B B T B B

B B B B -1.5]_ B B B B

B B B B B B B B B B B B B B B

Figure 5.2: InstalAe Sample Mapping: Box Rolaled _ ('ase

NASA/TM-- 1999-209182

123

B B B B B

Rotation An(

B B

B B B B B B B 1.5

rle : 0.392699

B B B B B B B

B B B B B B B

B B B B B B B

B B B B

B B B B

B

B B B B

B B B

B B B B

B B B

B B B

1

B B B

B B B

B B B B 1.5

B B B B

B B B B

mbB B B B

B B B B

B B B B B B

B B B B B B B

B B B B B B B

Figure 5.3: St.al)le Sample Mapping: Box Rotat,,d _ Cas, _

NASA/TM-- 1999-209182

124

expressed in multidinlensional Taylor series or Lagrangian form, it, is then necessary t,o solve for

the unknown paramet,ers by forming a consislent set, of linear equations. Each equation of the

systmn is the spalial int.erpolant function evaluated at a known interior grid poinl which is set

equal to the data at tile interior grid point. Or, the spatial interpolan! timer.ion is evaluated

as part of a boundary condition at a wall boundary and set. equal to zero. An examph- of this

procedure is shown next.

(!onsider the c3o0 MESA scheme in which stencil number 1 (shaded box 1) of figure .5.1

needs an interpolation function to evaluat.e the ,t till points within its domain al each time step.

The assumed boundary conditions are:

i)p
-- = 0 (5.1)
(hi

I;_ = 0 (5.2)

- 0 (5.3)
0q

where I" = (it, c) is the velocity vector with velocity componeuls u and _' in the (:artesian x

and y-axis directions , p is the scalar pressure, _1 is the normal t,o t,h_' wall surface direct, ions, r

is lhc l.angen! to Ill," wall boundary direction. V_ is the velocity tangential io the wall, and 1;e

is the velocity normal t.o the wall.

If l[le three 2nd order local interpolalion polynomials are in multidilnensional Taylor series

fornl :

'2 '2

v(.,',.v)= Z Z :/
i=(I j={)

'2 '2

i:D j:D

i=ll j=lt

Then each function has 9 unknown coefficients that need solutions. Solving l.he coet[icienls

(ct,i. j) is achieved I)y iiiverl ing a .q × 9 ilial rix formed frolII l.h_" 1 I>oundary condil iOli equal i()liS 5.1

cvalualed al _'ach mapped boumlary poin! and the 5 inlerior equations 5..1 are evalualed al each

interior i)oinl. The boundary comlitions force the' simultaneous solution of ('ui,j and cci,j sine.

N ASA/TM-- 1999-209182

125

theyoperateonthevelocityvector,andareinherentlymultidimensionallycoupled;thisrequires

the inversio_l of an 18 × 18 matrix. This matrix is formed from tile 8 bomldary condition equations

(4 of equation 5.2 and 4 of equation 5.3) evaluated at. the same mapped bOulldary locations as t he

pressure and the 10 interior equations evahlated at the interior grid point locations (5 equations

for u(x. Y) and 5 equations for t_(a', y)).

Once the coefficients c]_i,j, clti,j, and ct,i,j are solved, then the spatial interpolants p(x, !/),

u(.c, y), and t_(x, y) are defined for all locations within tile stencil domain (ie. box number 1 in

figure .5.1). The 4 fill points are expressed as a. linear combination of the 5 interior grid points

by evaluating the spatial interl)olants at. each fill point location. Tile fill grid point shared by

stencils 1 and 2 of tigure 5.1 has the following stable pressure solution with local origin at lhe

center of box 1 and h is the distance between grid points:

p(O, h) = O.8.54193 p(h, h) + l .fiO13 p(O, O)- l .33704 t,(h. O)-O.66732(.i p(O, -h)+ O.518872 p(h, -h)

(57)

And the same fill point has the following pressure solution with local origin al the center of

box 1 when the st.enci[sequence is changed at ill figure 5.2:

p(- h. 0) = 0 3)501.5 p((I, 0) + 0.23779 p(- h, - h) + 0.198062 p(0, - h) - 0.:t86002 p(h, - h) (.5.8)

Tim [atler solution uses fi_wer interior gri([points (4) _hal) l.he forlner (5) all(| results ill a

numerically unstable solution.

Once lhe ,1 fill points are evaluated ill box 1 of figure .5.1, only three of the five inlerior grid

points have enough information in their 3 × 3 stencils Io be time advanced. Two interior grid

points require data fl'om till points in box number 2 and box numl)er 8 of figure 5.1. In practice.

all fill points are evaluated tirst (betbre the interior points), so that the interior grid poinls may

})e lime advanced simultaneously for in]proved computational perforrJ_ance.

5.1.2 Forming the Interpolant with Lagrangian Polynomials

[{egardless of which slencil domain box is being used, there will always be 9 unknown coelticient.s

(c.l'_.jVi,j E (0, 1.2)) per primitive variable function f(.v. !t) when lhe multidimensional Taylor

series form of Ill,' interl)olams is used with the c:_o0 MI!2SA scheu|e in two-dimensions. Tin'

NASA/TM-- 1999-209182

126

Lagrangian form avoids this by taking advantage of the regular (!artesian grid structure used in

this work.

If we assume the three local spatial interpolants p(x. y).u(x, y), and v(x. y) are Lagrangian

polynomials, then the unknown coefficients are siml)ly the fill point values themselves. This

results in no more than 7 unknown coefficients for each interpolation function since each stencil

domain box will contain at least two interior grid points due to the $7 and $8 assumptions

described in section 4.5.

For example, using the notation of figure 4.2. suppose we would like to time advance U"
7_1 ,o

to I'"+1,,,.o.where (_ = p. u, or _'. This corresponds to time advancing the center of box number 5

in figure 5.4.

Using the c3o0 MESA scheme requires using the six interior grid points (:" 1_,,_, l _''
" 17_ ,p, ' 177 Tn,

l'" l'" I _'' and the fill grid points 1'14,' I., l,. .,v' l, ,, l .,., which are mal)ped lo the locations l _'
b p '

l ""t,,,, l'"t,.,,, respectiwqv.. The Lagrangian form of the spalial interpolants are:

.r (-h + .)
fn_(.v) - 2 t{-' (5.9)

(-h + x) (h +.)
fo(a') = - h'-' (5.10)

.r (h +..)
J'p(.r) -- 2h'-' (5.11)

!/ (-h + y)
Ym(!l) - 21{-' (5.12)

(-h + y) (h + y)
.qo(y) = t{-' (5.13)

,_ (h + ._)
Yt)(Y) -- 2//'-' (5,1,1}

p(x. y)

.(*. y)

= (pt.,,,f._(x) + 1'....... fo(x) + p fp(.v))gm(y) +

(pz,.fm(x) + p fo(x) + p.,ofp(x))9o(y) +

(t'l,,, f m(x) + 1',. 4' fo(x) + t'o 4'fP(a'))Up(y)

= (ut,.,fm(.r) 4- u re(x) + u fp(.v))g,n(,q) 4-

(ul,.J'm(a') 4- u J'o(.r) + u.,.ftp(x))go(tj) +

(ttLt,J'nt(a') + u,,_,l,J'o(.v) + u. p f l_(.r))yl,(.q)

(_.15)

(5.1(;)

NASAJTM--1999-209182

127

B B B B B B

B B B B B B

B B B B B B

B B B

Rotation Angle = 0

B B

B 1.5 B

B B

B B B B B B

B B B B B B

B B B B B B

B B B

B B B
B B B

B B B
B B B

B B B B B B

B B B

1.5

B B B

B B B
B B B

B B B B B B

B B B
B B B

B B B

B B B

B B B

B B B B

B B B B 1.5

B B B B

B B B B B B B

B B B B B B B

B B B B B B B

Figur_ _ .5.4: Stable Sample Mapping: Box Unrolat,ed (!as_"

NASA/TM-- 1999-209182

128

,'(*, v) = (vl,,,fm(x) + t,,...... fo(x) + t,o,.,ft,(.e))gm(y) +

(t'l.ofm(x) + +',..... fo(x) + eo.oJ'p(a'))yo(y) +

(vI,1, fm(.r) + r,,, # fo(x) + _'o,I+fP(a'))gP(,q) (5.17)

Tile coefficients P,_.b are simply the pressure values at. tile corresponding grid points (a, b) :

a,b E (m, o,p) in figure 4.2. In this case. six coefficients are known, corresponding to the six

known interior grid points. The Lagrangian formula requires solving only 3 unknown coefficient, s

of p(a'. !1), (Po4,, P P), compared to the 9 unknown coefficients (cpo,o, epl,q), cp'_,o, C'po.l,

Cpl,1, ('P2.1. cl"_',o, cp[i,2 ,Cpl,2, cp2,2) required when using the multidilnensional Taylor series

form. Similarly. u(.r, y) and v(x, y) have 3 unknown coefficients each. Solving the 3 unknowns in

p(a', y) requires only 3 equations or the inversion of a 3 x 3 matrix. The boundary condition 5.1

is applied at locations (b,p),(b,o),al_d (b,m) resulting in three equations which form a consistenl

linear sysleul. 121 stencil domain 5 of figure 5.4, the boundary is exactly aligned wilh lhe grid so

a = 1 in tigure 4.2 and boundary locations (b,p),(b,o),and (b,m) are equivalent to grid locations

(p.p).(l).O), alld (I).lU) respectively. The unknown coefficients, (1)o4,. p P), will be expressed

as a function of lhe six interior grid l)oints contained within the stencil number 5 of figure 5.4.

With its unknown coefficients solved, lhe primitive pressure function p(x, y) in equation 5.15 is

now known for all time as a function of interior grid vahles and is evahlaled at each time sl.ep

after the interior grid points are evolved in t.ime.

Similarly. the coetli('ients of u(.r. !I) and t'(x, !t) are ,,lel.erlmned using the boundary condi-

tions :_.2. 5.:1 eva[ualed at lhe mapped wall locations. The coeflicienl.s ua,I, and t_,_.t, represelll

the grid values for u(.r,!l) and t'(a'..q) in the same v,'ay as lhe pressure coefficieltls Pab. The

boundary conditions for(',, lhe simultaneous solution of ua.I, and t',+,l, since they operal.e on the

velo('ily wwlor in an inherently nlulth]imensional maimer. There will he 6 equations required 1.o

solve lhe six fill points (u,,l,, u_..... a<,,,,,, t',.l,, co c,_.,,+) compared to the 18 equations required

when using lhe multidimensional Taylor series forms. Assuming t,he lypically cubic cosl, O(,\'a),

to lna! rix inversion, the Lagrangian form's advanlage grows with three-dinwnsional problems.

NASA/TM-- 1999-209182

129

5.1.3 Forming the Interpolant with Hermit!an Polynomials

Thecoefficientsof thespatialinterpolantsusedwith the Hermil,ian MESA schenles may be

solved using a Hermitian form of the interl)olan! to significantly reduce computational costs.

The savings comes from mininfizing tile number of unknowns in the spa!!a[inlerpolant by

forming tile spatial interpolant hi a Hermitian form as sbown in equation 5.23. Since only

the aligned boundary case discussed in section 7.1.4 has]men successfidly solved, only a brief

presentatioll of the techniques employed will be discussed here. Tile odd dimensioned stencils

with Hermit!an data are numerically unstable and so we will discuss the _ × 2 stencil instead.

In the Hermit!an form of tile spatial interpolant, each unknown coetficielll is (hqined by the

data elements in the stencil. Since the interior grid points within a stencil are known, only

the data elements at the fill points require a solution. Selling up !,he th'rmitian fornt of the

polynomial[is acconlplistled using an extension of' Newton's Interl)o/atory method [&q]. Tile

algorithm is based upon dividod differences and tile observation that each dividod difference

term is an approximation of the derivative of the function being intorl)olaled. This procedure

was developed and widely used hefore the advent of digital conllmters [15]. In this work, the

procedure is executed itl a completely sylnl)olic tnanner so that t he actual oquatJon for the spal ial

interpolant is derived for a general set of data. Since the fill points are not known, i! wouhl

not be possible to use this extension of Newton's Interpolatory method without the symbolic

extension. In addition, !he interior grid points vary in value at each time step and it would be

necessary to run the algorilhnl at each time ste l) if the symbolic form of the equation were not

used instead as in equation 5.23.

Using t ho exlension of Newton's Inlerl)olalory method and executing it sym)o ca[3 a one-

NASA/TM--1999-209182

130

dinwnsional Hermitian interpolant is found for tile 5 th order c2o2 MESA schelne:

(a' - xl)3 (6 x'-' + 10 x0"-' - 5 x0 xl + xl'-' + 3 x (-5 x0 + xl)) fdata(O, xO)
f(x) =

(x0 - x 1)5

(a'- a'0) 3 (6 a"-' + x02 + 3 a' (a'O- 5xl)- 5xOa'l + 10.rl'-') fdata(O, xl)

(x0- xl) 5
+

(--a'+ X0) (X-- xl) 3 (3X-- 4X0+ xl) fdala(l,xO)

(xO -- xl) 4

(x - x0) 3 (3x + x0 - 4xl) (x - xl) fdala(1.xl)

(x0 - xl) 4

(x - .r0)'-' (x - a'l)3 fdata('2, xO)

2 (xO - a' 1)a

(x - xO) s (x - x 1)'-' fdala('2, x l)

2 (-a'O + xl)S

- (5.18)

+

+

The two grid points m a row are labeled x0 and xl in these equations and tho data elements

are labeled:

0 '_'.f(.r)
fd(,ta(dx,x) - ii.r.t.,. (5.19)

Each coefficient of fdata(da', xi) in equalion 5.18 may be labeled ffXiD&, and therefore the

one-dimensional interpo]ant 7),18 may be written as:

f(x) = If.\'(,D() fdata(O, a'0) + ff.\'(_DI J'dat.(l. a'0) + II.Y[)D.. J'dat_t(_..r0) + (5._(I)

H.\l D_) fdata(O, a'l) + H.\'1 l)1 ,fdal(_(1, a'l) + If.\'1D,e J'd(da(2. a'l)

Extending this to lwo-dimensions is a simple matter of crea(ing the y-interl)olant, f(y). by

substituling 3 for x in equalion 5.10; 1o get:

f(!l) = H)]_D(_ J'dala(O, t,lO) + tt)i)l)l fdata(1 qO) + H}])I)., fdala('2,.qO) +

If)j D(I fdala(O, yl) + tt}_ 1)1 J'dat,(1, ,ql) + H }_ D.2 fdeta('2, .ql)

(5.21)

with

0't_Jf(,q)

fdala(d!l,.tl) = O.qj_ (5.22)

NASA/TM--1999-209182

131

Tile tensorproductof theseone-dimensionalinterpolantsformsthefollowingtwo-dinlensional

spatialinterpolanlin Hermitianform:

f(x, g) =

(HXoDo fdata(O,O, xO, yO) + HXoDt fdala(1, O, xO,yO) + HXoD:, fdata(2,0, xO, gO))H_oDc_ +

(HX1Do fdata(O, O, a:l, yO) + HX1Dt fdala(1,O, xl,._O) + HXII)e fdata(2,0, xl, gO))H}bD_ +

(HX_Dt_ fdata(O, O, *0. yl) + HXoI)I fdata(1, O, ,tO, yl) + HXoD,_, fdata(2. O, xO, yl))H}'I D() +

(HXIDo fdata(O,O, xl,yl)+ HXll)l fdata(1,O,xl,gl)+ HXiD., fdata(2,0, xl,yl))H}lDo+

(H.\'oDII fdata(O. 1. x0, g(J) + HXo[)_ fdala(I, 1, x0, y0) + HX.I)., .fdata(2, 1, .r(I.._0))t1 _)Dl +

(tl.Yt Do fdata(O, 1, .r l. y0) + H.Y1 D I

(H X, Do .f dal a(O, 1, ;tO, !/1) + tt Xo D _

(H.\'j Df) fdata((), 2, .r 1,91) + HX_ D_

(tlXoDo fdala(O, 2, x0, gO) + HXoD1

(H.\'I D0 fdala(O,2, xl.!lO) + ttX1D.

(HX_D_) fdala(O, 2, .r0. yl) + ItX()D1

fdala(1, 1, xl, gO) + HXI D._} fdata(2, 1. xl, gO))tt}ilD1 +

f dal a(1, 1, xl), !/1) + H,Yo D2 .fda/ a (2, l, xO, y l))tt }i D _ +

fdala(1, 1, xl,91) + HX1D, fdaht(2, 1. xl,91))H}2 D1 +

]'data(1,2, xO, gO) + HXoD._} fdata(2, 2, xO, gO))It}]lD.,, +

['data(1,2, xl. gO) + H X1D'_, fdala(2.2, xl. gO))H'_i_l)'_, +

fdala(l, 2, xO, y l) + H XIt D,_, f dat a(2, 2..tO, g 1))H }j D._, +

(ttX1D, fdala(O, 2. x 1. yl) + ftXI Dl fdala(1,2, x 1. yl) + HXI D., fdala(2, 2. a"1, gl))ttY, D.,

(5.23)

with

O_''+dy f(x, _,,)
fdala(d.r d!l, .r. t/) = Oa.dyO_d_j {5.24)

Nolice t,bat lhe spatial inlerpolant is now written in a form in which the unknowns are

simply the data elements. If grid point (x0,y0) is the only fill point in a 2 × 2 stencil, lhen all

data elements in equation 5.21{ matching fdata(dx,dy,x0,y0) require a solution. Tile remaining

e[etlletlts, though left. ill algebraic form, are actually known at each time slep and do IIo require

a solution. The other data elements are calculated using the Tensor product form discussed in

chapter 3.

Additional boundary c(mdilions need lo he developed for l he |termitian methods since they

NASA/TM--1999-209182

132

havemoreinformation a.l each grid point. The boundary conditions are developed directly from

Ill(, linearized Euler equations in which the convection velocity is zero.

The assumed boun(tary conditions for the rotated box problenl of section 7.1.4 ar<

):-'r+ l+t l)

Otl'-',_+l rt

0"-'"+t I ;_

_]l]2rl+ 1 T t

- 0

- 0

Vlt. g:l,,t E(O, 1,2) (5.25)

where I = (a, v) is the velocity vector with velocity components u and c in the (!artesian

x and y-axis directions, p is the scalar pressure, q is the normal to tile wall surface direction, 7-

is the tangent to the wall surface direction, I) is the velocity tangential to the wall, and I; I is

the velociW normal to tile wall. The maxinmm values of n and t depend upon the order of tit.

MI-_SA scheme. O > (21_ + 1 + t).

(!onstruction of these boundary conditions is simplified using the following relationship [28]:

o"+'f(...u)

011,_7-t
_ (,l.V)"(7-.V)t.l'(a ., !/) (5.26)

I:or example. (lefine the unit normal vector, 1/ = (oormx. noting), then:

O'-'f(x, !1)

&/_7-I - _lorut.r I_orm.q .f(°"-')(.r. y) +

(norm.r - 71ormy) (o,,rmx + oormy) f(1.11(x, y) -

t_ormx norm q fl'-',l) t(.r, y)

(5.27)

The spalial interpolan! function f(x,y) is defined in equation 5.23 aml may represent the

Im'ssure (p(x, !t)). or the velocily (l'(a', y) = (u, c)) ill two-dimensions. Using the coefficients of

the fimction f(x,y) in equal ion .5.27 aml the fact that data element j'l a.,.,,#:i(xi, ,qa) will ahvays have

the umltiplier (HXiD_t.,.)(lt})I),#/) in equation 5.23, the I)oumlary comlitions can 1)e quickly

coust rucled sylnl)olically.

NASA/TM-- 1999-209182

133

In particular, it is possible t.o represent the linear syslmn as:

:_ f = _'d (5,28)

where .,VI is tbe matrix of flmctions of normx, normy, H)(iDda., and H}iDdu; f is tile w,ctor

of fill grid point data elements m the stencil: ,.'_" is tbe matrix of flmctions of normx, normy,

HX, Dd_-, and H)_/D+j; d is the veclor of interior grid point data elements.

The solution to the fill points is then:

J" = .VI-tA,'d (5.29)

Finding t.he inverse of .V1 is difficult with higher order MESA schemes due t.o poor condition-

ing of the matrix. It. was possible to invert matrix .Vt with schemes up to 11 u' order accuracy.

Higher accuracy has not yel beell achieved though other approaches remain to be tried. First,

the difficulty of a badly ('ondilioned system may be avoided by solving the system 5.28 symboli-

cally. Using currenl compul.er algebra packages il is nol possild,' to quickly sohe Ibis sysl.em in

a direct ma,mer. However. an approach using interpolation is discussed in [72] lhal can produce

the inverse of the matrix sylnbolically while aw)iding the combinatorial explosion which occurs

when using LU and Gaussian elimination symbolically. Second. the systi('lll n,a_ _ be solved using

Modular Arithniet.ic in which only integers are manipulaled [125]. Fina]ly, the conditioning of

the system changes by varying the sel of boundary conditions used, changing the grid spacing,

or multil)lying the matrix system with Im'-conditiolwrs.

If the sysl.enl 5.28 could be solved symbolically into fornl 7.1.2.() |.bell nol. Ollly would lhe

conditioning issue be avoided, but the solid wall geometry could be lWrmitt.ed to move (as in

turbomachinery). Also, all possible stencil configurations could be pre-computed reducing the

time required to &welop spatial int.erl_olant.s for each fill point. This will be pursued in later

work.

5.1.4 Insuring Consistent Linear Systems

The mapping of lhe fill points to the wall boundary must never place 4 or more till and/or

imerior grid points that arc wilhin the same sw,<'i} domain (shaded boxes) in a line that's

NASA/TM-- 1999-209182

134

parallelto thecoordinateaxes.Todosowouldcreateaninconsistentlinearsystempreventing

thecalculation of a local spatial interpolant for the stencil with this mapping. Fortunately, the

mapl)ing developed ill chapter 4 insures that ew_ry possil)le 3 x 3 stencil will haw" a unique

mapping that provides a consistent linear system (though the degenerate cases may require

human assistance). A corollary t,o the Fundamental Theorem of Algebra [94] is that there is a

unique polynomial curve of some degree that passes through a particular sel, of points. 'II_erefore,

the Lagrangian and Multidimensional Taylor series forms are equivalent and will produce the

Sallle results. It is possible then to study the properlies of any polynomial of same degree thai

passes through the stencil points to understand the l)roperties of the Lagrangian form. If more

than 3 fill and/or interior grid points are Oll a line parallel to the coordinate axes. the ollly way

to inlerl)olale along this line is to use at least a third order interpolating polynomial in one

dimension. For example, to creale a spalia] mterpolant for the pressure in mullidimensiona]

Taylor series form that could interpolate across a stencil with four points along lhe y-axis, tile

following nfinimal degree polynomial is required:

p((), 9) = cp0:_ + cpo,19 + _7_l_,'e,q': + cptl,,_!t a (5.30)

But the c3o0 MESA scheme is only second order accurate and does not use the :'Pil.a term

which can be considered a third order partial derivatiw _ term in the y direction [39]. Instead,

it llSeS the terlns of i,he pyramid nlueunlolliC of chapter :_. (cpo,ll, epl,i_, cp._,o, cpll,1. CPll. el*'..,,1,

ep<.,, epl,,_,, Cpe,_,). It is desirable to use the same spatial interpolant forms when int,erpolating

the fill points as the .MESA schemes do in their spatial interpolation step to insure uniform

treatment of the entire grid for stability, accuracy, and isolropy. One of the themes of the

MESA approach is to treat all aspects of the problem in the same manner and io as closely as

possible emulate the information flow of the actual physics. All acoustical physics interactions

are nearesl neighbor and t[le domain of depen(lence of the hyperl_olic linearized Euler equations

fits within a 3 × 3 stencil.

By using the Ilermitian MESA schemes (c2oD. c4oi), c6oD) it is possible to increase the

accuracy and resolution of the numerical scheme without increasing the stencil size. Nol only

do small stencils simplify |lie mapping woblem, tml they more faithfully reflecl the information

ttow of the t)hysics itself. Typical (:AA schemes use larger stencils to gain spatial accuracy

N ASA/TM--1999-209182

135

but most of the grid points used in these large stencils are not, in t,he domain of dependence

and therefore do not truly reflect, tile informat, ion flow of t,he act, ual physics. At the very least

carrying the extra st,encil information of a very large stencil can lead t,o significant inefficiencies

and possibly introduces instabilities.

5.2 Systematic Stencil Selection

For typical applicat.ions many fill point.s will need to l)e mapped t.o the complex geometry

solid wall l)otmdaries. The real)ping attd stahility of the scheme depends upon the sequence

and location of the stencil domains shown by figures .5.1 and 5.2. A particular fill point may

be solved ,,sing one of several possible int.erpo]at.iotJ timer.ions depending upon which of t.he

overlapping 3 × 3 stencils is used. unless of course only one stencil domain contains the fill

point. A syslemat.ic way of selecting the location and sequence of l he stencil domains has been

developed in this work that provides accurate attd st.able solutions for the c3o0 MESA scheme.

The Hermit.tan MESA schemes, howew_r, need additional work t.o be stable in all cases.

5.2.1 Maximize Interior Information

A method for choosing the locat.ion and sequence of the stencil domains hased upon maximizing

the use of interior inforlnation was found that produces stable solutions to t.he c3o0 MESA

scheme in all cases attempted. The met.hod selects those 3 × 3 st.encils t.hat contain the most

interior grid points. As was shown in equations 5.7 and 5.8. the number of inferior grid points

used to calculate a giwm fill poinl can vary. In figure 5.1 box numl)er 1 has four fill and five

interior grid points; whereas box number 2 has five fill and four interior grid points. The spatial

interl)olant in box nulnber 1 should be solved before box lnnnber 2 t,o maximize the nmnber of

int,erior points influencing its fill poinls. But il is possilfle to do better than thal as shown in

figure 5.::I. In this case, box number 1 has two fill points and seven interior points. Notice no

fewer than two fill points cat, exist in a 3 × 3 st.encil for this probleln. A 3 × 3 stencil will always

contain at least one fill point. Also, while box 1 m figure 5.3 has two fills, so do hexes 2, 3. 4,

5, 6. 7. and _: Any of those boxes could have been solved first. However, all stencil domaius

containing 2 fill points should I)e solved before those contain 3 fills. Therefore. boxes 9, 10. 11.

and 12 are solved ,text. This is followed by boxes with .t fill points (boxes l'l. 1,1. 15. aml 16)

NASA/TM-- 1999-209182

136

And finally, boxes 17, 18, 19, and 20 contain five fill points and are solved last,.

This method of stencil selection also encourages multiple overlap of the stencils which was

found to be necessary for numerically stable systems as well. However, overlapped stencils that

minimize interior information are generally unstat>le as in figure 5.5.

An example of the lack of overlap using minimal interior ordering with small 2 x 2 stencils is

shown in figure 5.6 and the salne case but using maximal interior ordering is shown in figure 5.7.

The fill points shared by stencils in the overlapped region provide lhe coupling necessary t,o

form local spatial iuterpolants that are piecewise continuous across the computational domain.

But, this coupling can result in excessive error growth. Therefore, another advantage of ordering

stencil domains by fill point count is the natural separation of the stencils which serves to quell

lhe growth of certain propagation modes. This is seen in figure 5.4 in which boxes 1,2.3 are

connected, I>ui. then box 4 is llO| connected to box 3.

It was also possible to create a st, al)le MESA scheme with solid wall boundaries I>y alternately

using two unstable schemes at every other time step. This essentially requires using two different

sels of st,encil selection algorithms but an automated method for doing this was not obvious nor

al>parenlly needed. But this does demonstrat,e some of the coml>lex I>ehavior that is occurring.

Proving stability for all cases is nol currently possible for complex geomelries due t,o limits in

the mathematical theory [45]. It is possible to prove stal>ility for a specific case I)y examining

the eigenvalues of the evolution matrix, but it is usually quicker and less expensive lo simply

lest the algorithm on a real case. Since the stability of the general muhidimensional case cannot

be prowm al t,his time, these numerical experiments offer guidance should future ins/abilities

arise.

5.3 Isolated VS. hnplicit VS. Recycled Fill Point Solution

Once tile mapping of the fills and the select, ion of t,he shaded stencil domains is compleled, the fill

equations can be determined ill several ways: isolated, implicit, or recycled. The wrong selection

of stencil donlains results ill an unstal)le nmnerical scheme as mentioned. Slightly perturbing

lhe mapping (adjusting the arrows) of the fills did not noticeal>ly alter the accuracy or stability.

The fill equations nol only depend upon the mapping and location of the stencil domains, bul

also Ill)Oil how |lit' ow'rlal>l)ed regions are dealt with. The Isolate(I method ignores the overlap,

NASA/TM-- 1999-209182

137

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B4

B B B B B_

B B B B

-2

B B B

B B B

B B B B

B B B B

B B B B

B B B B

B B B B

B B B B

Rotation Angle =

B B B 2

B B B

B B B

B

B

B B B B

B B B B

B B B B

B B B B -2

0.392699

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B

B B B B

B B B

B B B

B

B B B

B B B

B B B

2

B B B B

_B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

Figure 5..5: Sample Mal_pi.g Ordered by Minimal lnt,orior Delwnde.cy: Box Rotated _ (lase

NASA/TM--1999-2(t9182

138

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B_

B B B B B4

B B B B

-2

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

Rotation Anc

B B B 2

B B B

B B B

B

B B

B S _[

B B B B B

B B B B B

B B B B B

B B B B B -2

le : 0.392699

} B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B

B B B B

B B B

• • B B B

2

• B B B B

• _B B B B B

B B B B B

B B B B B

B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

Figure 5.6: Samph" MaFT, ing Ordered by Minimal lmerior Dependency Small 2 × 2 Slencil:
7r

Box l_otaled _ (-'ase

NASA/TM-- 1999-209182

139

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B Bq

B B B B B_

B B B B

-2

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B

s B

B B B

B B B

B B B

B B B

Rotation Angle :

B B 2 B

B B B

B B B

B

0.392699

B B

B B

B B

B B

B B

B B

B B

B B -2

B

B B B

B B B

B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B

B B B

B B B

2

]3 B B

B B B

B B B B B

B B B B B

B B B B B

B B B B B

B B B B B

Figure 5.7: Sample Mal)ping Ordered Itv Maximal Interior Depende.cv Small 2 × _2 Stencil:
7r

Box Rotated _ Case

NASA/TM-- 1999-209182

140

and the Implicit and Recycled methods couple the overlapped stencils.

5.3.1 Isolated Method

The Isolated method is unstal)le but its basic principles help in tile understanding of the other

two methods, which are stable. The Isolated method treats each shaded region, as in figure 5.1.

as an independent system. The box number 1 is solved first,, creating solutions for the 4 fill poinls,

including tile one shared with box llnlllber 2 using the local spatial interpolant developed for

box number 1. Then box nun|her 2 is solved, creating solutions for its 5 fill points, except it.

does not assign an equation to the shared fill point since t,hat point has been assigned already

using the local spatial interpolant in box 1. This process is repeated for all shaded boxes.

Since the boxes are solved independently, there is a.n inherent instability created at shar_'d fill

points since each stencil would ill general have a different solution for its shared fill points. The

arrow malq)ing could result ill more than one arrow direction at a till point creating another

possible instability. This instability is again caused by lhe fact. that, in general, each local spatial

inlerpolant will generate differing solutions at a particular point tha! is shared by another local

spatial interpolant tmless of course the shared point is an interior poinl sin('(' [)()lit spalial

interpolants are by definition equal to tile shared interior point.

5.3.2 hnplicit Method

The Implicit nletllod attempts to remove these [llsl.abilil.ies by forming a piecewise colllilulol.ls

spatial apl)roximalion o[' the entire grid domain. This is achieved by simultaneously solving all

the unknown spalial int.erpolant coefficients in every stencil domain that contains a fill point.

(sing the Lagrangian illlerl,olat, ion form results in one equation for each fill point, except when a

fill I)Oillt is shared betweeu |wo or lllOr(- stmlcil domains. Shared fill points can use one e(lllatiOll

from any of the sl('ll('ils il is contained within.

The lmplici! ntelhod, ill general, results in a large matrix to invert. For examl)le, the rol.aled

box in figure 5.1 has 32 fill l)oints creating :!12 equations which require solving 32 coefl-icienl.s

Siluultaneously. The atlvanlage]lere is thai the shared fill points are now truly shared sill('('

they will haw the same valm's using any of the local spatial inlerpolanls from stencils in which

lh,'y arc ('olltaillt'd. This approach creales stable mlnteri('al methods, hut is very VXl)ensiv_,. No!

NASA/TM-- 1999-2{}9182

141

onlyis tile matrixinversionprocess(whichhascubiccomph-xity)expensive,but thefill point

solutionsbecomealinearconlbinationofmanyinteriorgridpoints,hi figure5.3,thecontinuous

overlapof stencilsimpliesthat the last,st,encilnumber20dependsUl)Oninformationfromthe

first,stencilnumber1.Thefill pointsolutionsinstencilnumber20couldbealinearcombination

oftheentiresetof interiorgridpointsin thecomputationaldomain,excepttheoriginsinceit

isnotshaded!Forrealapplicationsthesecostswouldmakethisapproachintractable.

5.3.3 Recycled Method

Fortunately,tileRecycled met, hod produces results identical to the hnplicit method, but at a far

reduced cost. The essential idea is to treat fill points that have been assigued by a previous slencil

as an interior point in the next stencil domain that cont, ains it. Thin way the overlapped stencils

are still consistent with each other at. all grid point,s in common. I¢ather than simultaneously

solving tile entire system an in the Implicit method, the slnaller subsystelns (each stencil) in

solved in sequence. For the cane in figure 5.3 the cost is 200(33) = O(541.)) compared to the

hnplicit method cost of 0(32 s) = 0(32768) for creating the equations for all the fills. And,

the cost of evaluating the fill points is signiticantly lower as well. This savings occurs because

treating the previously assigned shared fill points as an interior grid point iu t.he subsequent

stencil domains results in llever having ulore than 8 grid points in a fill equation. Those pseudo

interior grid points are actually fill points thai umst be evaluated in a previous step. Since some

of tile points in a stencil domain depend upon stencil data outside of the curren! slencil, t.he

order in which the fill points are evaluated becomes important. This ordering couples the entire

problenl making it difficult to parallelize computations, though there are generally far fewer fill

points than interior point,s in a typical engineering application. One advantage of the hnl)licit

method is it expresses each fill point as a linear combination of interior grid points only and

therefore, the sequence ill which the fill equatiol|s are evaluated becomes irrelevanl.

NASA/TM-- 1999-209182

142

X= UnspecifiedPoint
O= Fill Pivot Point

Inner 3× 3 Entire 5 ×5

5.4

Figure 5.8:5 × 5 stencil with fill point ill center

Step-by-Step Demonstration of Mapping and Solving

the Fill Points

It is important to systematize the process of mapping and solving the fill points so that arbitrarily

complex geometries may readily be dealt with. An overview of one such process used ill this

work is presented next as a series often steps. These st,eps pertain to using 3 x 3 slencils as ltles_'

were tile nlost su('cessflil tllel, ho(ls foulld ill this work, lint the same concepts may be applied to

ally size stencil.

Step 1 Gathe, r Needed Fills

Make a lisl (referred io as a "lode" queue) of all tile fill points ill the grid. l{emow_ froln

consideration those Jill points that do not have all adjacenl interior grid point sin('e they. are

nol part oftlle3x3stencil of an interior grid point arm hence, are not needed. As allexanlple,

the fill points found ill each corner (one in each corner) of figure 5.1 are not needed since the

interior grid points will never require infortnation from those grid poims.

Step 2 Test Stencil Configurations

('onsider each 5 x 5 stencil in the entire colnpulational domain that contains a fill poim at its

cenler ([)ivol point) as ill figure .5.8.

Tesl the inner 3 × 3 stencil for corre('! hess (.q tests per stencil) I)y using the slencil cons/rain!

lree with N = :1 as discl,ssed in seclion 4.3. Ill lwo-dilnensions, 216 I)OSsible cases under the

no wrap assunlplions (SI, S:2, $3, S,I, S5, S6, S7, and $8) are Imill inlo lhe lree as discussed ill

set'litre -t._ and reql,ire only 9 lests per st,'ncil. If the inner stencil of tigure .5.S _loes nol pass

NASA/TM--1999-209182

143

this test,it is becausethegrid densityneedsto beincreased,the CAD geometry file has an

error, or a degenerate case has occurred that requires hu/na/l assistance. Put. these fill points al

the end of the "lode'" queue and deal with them later. These difticull fill points may actually

be indirectly solve([when a neighboring fill point that does not have these difficulties becomes

the pivot, point since all fill points around a pivot fill point are solved simultaneously.

Step 3 Order the Fill Points

Order the fill points in tile "todo" queue by the number of fill points contained in their 3 x 3

stencil from fewest, t,o nlosl. This has tile effect, of always using the most interior grid point

information for each fill point and is used in the se(tUellCe shoWll ill figure 5.3. If the order

is reversed, the eel.ire schenle is unstable despite providing piecewise cont, inuous interpolation

between stencil domains. The reversed order is equivalent t,o minimizing the number of interior

grid points tlsed for each fill point as shown in figure 5.2. Random Se(]llellCt_S of slencil domains

produce random results (some of which are st.able despite not using the maximal number of

interior points).

Step 4 Rotate to Match S7/S8 Case

Those inner steJMls that pass the lest ill step "2 will be of stm)ci] lyl)e SI, $2. S:L $4, $5. $6.

$7. or S8 as shown in figure 4.1a. If it is not of type $7 or $8 then rotate it once about the fill

pivot in figure 5.8 90 degrees and then retest it.. Ptel)eat this possibly two more times until the

rotated slencil is of t.ype $7 or $8 as shown ill figure 4.14.

Step 5 Map the Fill Points

Apply tile correct mapping to the fill point(s) contained ill the 3 × 3 $7 or $8 sub-stencil. The

$7 sub-stencil has the fill pivot poilll ill its top center position: While the $8 sub-slenci] has the

fill pivot point ill its lop left position. Use tile mappings ill figure 4.17 if the sub-st.ellcil is type

$8, or use the $7 lnappings in figure 4.18 if its not,. If the inner 3 x :{ stencil is of both $8 and

$7 tyl)o, go with tile $8 /hal)Ping sine(' il is simpler to eva.luale.

NASA/TM--1999-209182

144

Step6 -- Unrotate the Stencil and Mapping

Unrotate t,he 3 x 3 inner stencil (if necessary) back to its original state, whih" at, the same tim(,

rotating tile arrows in tile same direction about the fill pivot point by the same amount.

Step 7 -- Determine Mapped Fill Point Locations on Wall Boundary

St art.ing at the fill points ill tile unrotated 3 × 3 $7 or $8 sub-slencil, extend a line in the direction

of the assigned direction vector until it intersects the physical boundary. Repeat this for the

other fill poinls (up Io 7) in the sub-stencil. All the fill points within the sul)-slencil art, now

uniquely mapped to a poinl on tilt' physical boundary.

Step 8 - Colnpute the Local Spatial Interpolant

Generate the local spatial interpolant for the sub-stencil in the manner discussed ill sections 5.1.2

aud 5.3. The local origin of the spatial interpolaut will I)e t l|e center of the 3 x 3 sub-stencil.

no! the center (l)ivo! point) of the inner stencil in figur_ _ 5.8. After this step, a local spatial

i|m'rpolant is defined Oll t,]l(' st eucil's domain.

Step 9 Assign Solutions to th(_ Fill Points

Evaluate the local spatial interl)olaut at each fill l)oint in the stencil, assigning its value to each

fill point in lhe sub-stencil. Some of the fills that are not the fill pivot points are solved since the

spatial int erl)olam may I)e evaluated at all grid I)oints within the 3 × 3 sub-slencil. For example,

consider the rotated t)ox shown iu figur_ _ -1.3. The toplllOSt, fill in the top corllt'r of the box is

not needed alld is rej¢_cted in Step 1. The till point directly beneath it is ueeded but it cannot

be chosen as a lill pivot point since neither the $7 nor $8 assumption is satistied when it, is the'

cenler of a 5 × 5 stencil. It, is placed at the end of tile "Iodo'" queue by Step "2. It is solved in

this Step when either the [ill to i!s left or to its righ! is a fill pivot point.

Step 10 Remove Completed Fills From Queue

Remove those, till points from the "'todo" queue thai were assigned in Sic l) 9. t%1) the m'xl fill

point ()If the "'todo'" (t/lOll(' aml process the iloxt .") × .') stencil starling at Sic l) ,l. If lhc "todo'"

(tllOIl_' is ('nlptv tllOll SIO]).

NASA/TM-- 1999-209182

145

Aftercompletingallthesesteps,If the"todo"queueisnotemptynotifythehumanassistant.

5.5 Generating tile FORTRAN Wall Boundary Input File

After developing the solutions for all the fill points ill Mathenlatica, these solutions need t,o be

conveyed t,o the FORTRAN code that, is actually going to perfornl the calculations necessary"

for evolving the [inea, rized Euler equations in time.

To accomplish this, Mathematica generates a file for the FORTRAN code to read that

encodes the solutions for all the fill points. Since each fill point solution is essentially a linear

combination of the interior grid point data, the flit, includes the coefficients and locations of all

interior grid point data elements necessary for each fill pOillt. In addition, this information is

sequenced in the same order required fl'om the Recycled method discussed in section 5.3. This

file is simply stored as a one-dimensional array in FORTRAN and contains all the information

necessary to correctly evaluate all the fill points ill l,he computational domain at, each time st,ep.

The data file contains integer data types describing interior grid poinl local ions and real data

types representing the coefficients of each int,erior grid point. Iprom FORTRAN's perspectiw' all

the data types are real, bill the FORTRAN code converts tile reals to integers when al_l)ropriale.

Each fill point has a packet of information. The first two integers specie where lhe fill point is

located. The next three integers specify the number of p. u, and v terms lha! form the linear

combination sohltion for this fill point. Tlwn the data contains sub-packel,s in groups of 5. The

firs! two integers specify tile Iocalion of an interior grid point, the llext l,wo specie' its x and 3

derivat, iw's, and the last nunll_er specifies its coeflicienl in the liuear combination. The process

repeats until all fill point solut, ions have been comphq, ely sp_citied. In this manner, all fill poinl

solut, ions art' represented ill a single AS(:II file.

The FORTRAN code reads the fill pohlt file once at the beginning and stores it, in a one-

dimensional array. Then the entire (?artesian grid domain is time advanced using the FORTRAN

code generated in chapter 3. The fill and boundary grid poiuts are lime advanced as well using

the interior MESA propagation scheme even though the data is garbage: This avoids lhe cost of

determining which grid points are interior. (:omput,ing all t,he grid points at once also permits

vectorized and parallelized cxeculion of the MESA propagalion scheme as discuss,'d i, tl,' .ext

chapter. Aft,er all l,h," grid poims iu the COml)utal,ional domain are thtw advanced, the fill]_OilllS

NASA/TM--1999-209182

146

areevaluatedusingtheinformationfi'omtile fill pointfile. Thenthisprocessrepeats,all grid

pointsaretimeadvanced,thenthefill pointsaresolved.Thefill pointsdependupontheinterior

gridpointsat.thesalnetimestep,andthereforetheinteriorpointsalwaysneedto beevahlated

first. At tile first,timestep,therefore,it.is imporlantto supplythefill pointswith thecorrect

initial data.Afterward,thefill pointsareevaluatedusingtheinteriorgridpointdata.

NASA/TM--1999-209182

Chapter 6

Extension to Parallel

Computational Domain

The algorithn_s presented thus far are calmble of very high accuracy and resolution in space and

time. In addition, since they arc sil@e-step explicit finite-difference melhods thai depeml upon

local data only. they can be easily implemented Oll a parallel computer. Since the algorithm

developnlent can be completely automated as demol_strat,ed, il is desirable to also automale

their parallel extensions. This chapter will discuss the procedures necessary to accomplish the

automation thai results in the generation of a load balanced. SPMD (Single-Program Multi-

pie Data) model I"O1]TRAN code which uses lhe MPI (Message-Passing Interface St, amlard).

The ideas discussed apply to both two and three dilnensional problenis, but they were only

inlplemenled in two dimensions for this work.

6.1 Domain Decomposition

Developing a load balanced parallel FOHTR AN code is gwally simplified by the use of Cartesian

grids for the discretization oft, he physical domain. Recall that (:artesian grids also simplified the

grid generation process and enabled aulomated treatment of boundary conditions in compl,,x

geometries. Regardless of the geometry's configuration, all problems may be approached in tlw

SalllC way.

NASA/TM-- 1999-209182 147

148

As discussed, each grid point is deft]led 1o I;e a fill point, inferior point, or 1)omrdary point.

l{ather than t estilrg each grid poim, il is more etficient to treat all point, s as an interior poinl

and simply t imt, advanct, the enlire COml_utational domain. After advancing all points, their

the fill point.s are "tilled'" with the, correct solution usitrg t h_• methods discussed. The t_otmdary

poims are never used alld so their values are irrelevam.

Therefore', a successful load balaucing algorithm in l his case will allempt lo assigll all equal

mHnl)(.r of grid t)oillts to t'ach node. In most cases, it is not possible Io achieve an equal number

sitrce tire lot.al mmlber of grid lines in the COml)ulational (lomaitl ,nay not he t_velrly divisible.

The exact partit.ioning also depends upon the desired rlode lopology. For example, it may I)e

desirat)le to form a chain of 16 nodes in a lirrt' for ('ert.aill duct prot)lelllS or to form a 4 x 4 grid

of nodt,s itr a I_i-periodic open domain problem a.s shown in the right, side of figure {J.l.

Ill gelleral, it is important t.o maximize, lhe rat.to of comput, at, iorl t.o commtmicat.ion, lhough

this coustr_int may]_e lessened through t.ht" use of asyrlchronous commtmication as dis(-tlss_,d

lat.,'r. For tht- hi-periodic opetl domain proHem t.ho computat.ional domain should h_, decoml)Ost_d

lille square's as this maximizes tht _ area to perimeter ralio and thus miuimizes communicatiou

d_'lays. Each square will h," a,ssigll_'d 1o a node alltl will I_' lime advarrct'd irl l)aralM. AI.

t'acl| lit|it" step, t.h¢_ p_rimetor of each squar_ _ mus! I)e comt,mlricated to tilt' llOtl_' contaillillg th_'

u_'ighbo,'illg sql,are in tire computatioiral domailr.

[Cach Klode uses t.he same t:()RTRAN code as is Iised iLr t.he serial (norl-parallel) version. The'

nodes art' assigned lht' I)roper il_ilial dala by defi_i_g the local grid origin ill lerms of a global

grid origi|_. [Crror checki|_g also _ses this glol)al coordi_la/,, iuformatiot|.

For IBm' mosl part. _'a('h ilOd_, is solvi_rg a r_'('tallgular ol>en domain prot)le|_, with the' l)_rimeler

b_'itrg COlrrlrlllllicated at. each lime sleD. hi IBis way, no distinction is lllade of lht, l.ypt, of dal.a

h_'iug comtlimricated (rel,t'al_d ()[)(Oil domair_ data or nt'ighhoring interior grid data), ghert,fort,,

only tht- actual dimellsiotts of each nodt' itr local coordit_ates is re¢lt_irod. This assigtime_lt is

achit,vt,d as follows:

1. Assign the' minimum uumher of grid petals it_ t,ach di|n('r_siotl to each node

mi_h = [total !trig l,oi_rts i_ ho_'izo_tel di_':c/io_
r,od,7 i,_ I,_),'-7zo,,l_,_---7di,'---7_ctio,_ J (fi.l)

I.

'"i"" : f '°l(_l 'l"i_l "°i"'s i" _'("l_('('l d'p[('l_°"l- -- -- (,i._2)

N ASA/TM--1999-209182

149

2. Assign tile following extra points (if any) to the nodes in Round Robin fashion.

ea_traplsh = total horizontal grid points - (minh × nodes in horizontal direction06.3)

ea'traptsv = total _,ertical grid points- (Tldn_, × nodes in vertical direction) (6.4)

Starting with the left column of nodes, arid proceeding a cohmm at. a time, the extra points

are evenly assigned one per column. If there were extra, points, then at least one column of

nodes will contain one fewer column of grid points than the other cohmms of nodes. The same

process is repeated for the extra vertical grid point,s, slarting with the bottom row of nodes and

proceeding one row at. a t.ime to the top row. When coml}lete, lhe nodes will know how many

grid points lhey have in each dimension.

3. Detern]ine the local maximum coordinates for each node.

At. this point, it. is known how many grid points each node is assigned both vertically and

horizontally. It. is desired to have the origin of the local grid coordinat.es occurring in the center

of each stencil so that the original serial code may t},, used without, modification. This requires

carefully assigning the maximum array dimensions of each node. If all ew_l| llUlnl)er of grid

poil]ts is assigned to a node. then the maximum and minimum coordinates will differ by onP: if

it is an odd number these coordinates will he the same.

_umb('r of !trid t,oint.s assict_d
maxi = (6.5)

2

ini = -ma.ri or if e'en mini = -n_aa'i + l (6.6)

4. Fiml which node contains the origin in global coordinates.

It is necessary for each node to know where ii,s local origin is in relation to lhe physical

problem's global coordinate syst.em. This is achieved by starting with the al)sohH.e value' of

the bottom left node's (node O) minimum local coordinate, mini. Subtracting from this the

maximum global coordinate index, provides the global coordinate in the horizontal dimension

of the center of node 0"s local coordinat.e system.

hori.:-ol_tal ct ntr r i_ global eoordinaD,s = -ma.rimum 91obal indr a' + Ill_inil (6.7)

NASA/TM-- 1999-209182

150

The global coordinates of tile center of the next node to tile right of this node is found by adding

lhe points per node found in step '2 to this value. Ill a similar manner, lice remaining nodes are

assigned their respective horizontal global coordinates at the center of their stencil. Next, the

vertical global coordinates are determined at each center of each node. After this procedure, the

node which contains global coordinales (0, 0) contains the origin of the computational domain.

All nodes can now quickly convert between global and local coordinate systems. The local

coordinate systems simpli_' the extension of the serial code lo the parallel code. The global

coordinate systems permit the parallel assignmenl of initial conditions and error checking using

the known analytical solution which are defined in terms of global coordinates.

All nodes will be aligned with their neighboring nodes after these procedures are conlldele,,]

as shown in figure (5.1. Alignment means that the boundary between any two nodes will contain

the same lmmber of grid l)oint.s at both nodes. This alignment sinlplifies the communicat.ion

among nodes.

6.2 Message Passing

The MESA schemes enjoy the advantage of requiring only local data. ,_Ollle of the schemes in

('AA, such as (?onlpacl I)ilferences. require Sptine interpolations across the entire COlllplll.al ional

domain which reslric! their capacity for t)arallel co,npulations and spread local errors across t.he

entire computational domain. Also, the actual physics described by hyperbolic par!ial different.ial

equat ions (such as lhe linearized Euler equations) only depend upon local data cent ained within

the cone of characl.eristic curves (the domain of dependence). Indeed. the (TI, conslraint

is based upon this fact and provides some basis into why lhe ME,qA methods l)erform well.

Since only local data is required, communication between nodes is limited to nearest neighbor

communication. Although, for the t)i-periodic open domain problem, nodes on opl_osite sides

of the comptltational domain must also communicate and so one would expect lhal typical

engineering applications would actually perform better since they will have actual I_oundaries

which reduces the need for comnm,fication.

Modern parallel <'Ontlmting syslenls include hardware for <'onmmnicalitlg and colnpul.ing

simultam'ously. This capability can be fully utilized with l.he MESA schemes since' the inlerior of

,'ach square may I,e time advanc,'d imh,pemh_lllly of the' perimeler communication. 'I,_ simplify

NASA/TM--1999-209182

151

the logic used in communicating, the nodes are assigned all (i_j) index with (0,0) being the

bottom left. node in the network topology. Tlw engineer specifies in advance tile desired number

of nodes in each dimension. Tile computational topology will always be rectangular and is ideally

suited for a mesh or toroidal network topology commonly found in today's parallel systems. If

maxni and maxnj represent the maximum node count in the i and j directions respectively, then

a particular node's (node nun_b(r = nod(number) coordinates, (nod_=indexi, nodeindexj), are

given by:

nod_ind_a'i = mod(nodenumbcr, maxni)

node_n umber
nodeinde-xj - max, i

(6.s)

With this indexing, it. is straightforward to det.ermine adjacent nodes. An example domain

decoml_osition using ,1and 16 nodes with 8 grid points per unit in a mesh comlml at.ional topology

is shown in tigurc 6.1. The c_ul.er of the physical domain is indicaled by g_. The node num-

ber, (nodenumber) and its (,odeindc,ri,_todeind_.rj) coordinates are shown inside each node's

domain.

The grid points identified as B's are not thne advanced since a hi-periodic open domain

boundary condition is assumed. Those grid points get their values from the opl)osit.e sido of tile

grid. For example, in l.h¢' four processor case. llw left. side of node 2 is idcmtical Io the righl side

of node 3; the bottoln side of node 0 is identical to the top si<h" of node 2: the lop left corner

of node 2 is idontical Io the botlom right c()rlll_r of node 1. Since each node contains its own

logical nl(Hllot'y (MIMD), it does not know the values of the grid points contained within any

other node. It is lhus necessary for the nodes lo communicat¢ _ this information.

Sending information requires a node to know tlw nod,' lmmbers of its neighbors. However,

since the engineer may selec! any computational topology, the node topology is not known

apriori, ttowew'r, using the (nod_ind_xi,nodeindexj) information, it. is possible to quickly

idonlit_ tho neighboring nodes. This is done by adding or subtracting one _ from tile coordinates

of its (,ode iml¢.ci, ,od(inde.vj) pair. If node inde.ri equals 0 then tho node is in the left column

and its b'ft node has nod_i,de.ri = imta't,i- 1. If nodtindt.ri equals m,.r,i- 1 lh¢ql lh__ uode

is in llw righl cohmm and ils righl nodo has node indt,vi = O.

NASA/TM--1999-209182

152

Figure 6.1 : Solving bi-periodic open domain Linearized Euler Equalions wil h M ESA

These relat, ious are t,rue for tile hi-periodic case, but not necessarily |br actual engineering

applications. The al)plication may have radiation boundary Coliditions or solid wall comlitions.

both of which do not require information fi'om neighboring nodes.

Ollce l,hp llOW node index pair, (nodeind:xi, nodeind:xj), is delermine(l, it requires conver-

sion to a node number, nod_nunTbcr using the expression:

nod¢numb_r = nod_ind:a'j , maxni) + nod_ind¢a.i (6.9)

The niessage passing re(luireiiienls of each node only delielids UpOli its loealioli ill the inesh.

If l lie iiode is I1Ol in l he l)ollolii row of [-ig/lrt' ($.1, for exanlpie, then it will always iieod io

coniliiunicale dowiJ alid receive inforilialion froin a uode wiih index (nod_ iTtd_ a'i, nod_ inch a'j- 1).

Siniilarly, if a liode is iiol in lhe right coluillii of nodes (iiodes 3, 7, 11, and 15 in figuro (J.i)

l]ion il will always need to eoiiHnuliiCale right and receive inforilialiOli froili a liOde wilh index

(nod_ ind_ .r i + 1, no& ind: %).

NASA/TM-- 1999-209182

153

6.3 Synchronous Cmnmunication

The periodic boundary infornlation needs to be exchanged ill the serial (non-parallel version

) of the solver code. Tile exchange is a.ccolnl)lished by COl/ying tile data fronl one part of tile

data array t,o another (from within the salne data slorage area). MPI perlniis a single node

to eolnlnullicate to itsei[f and so the paraflel version rumling on a Sillgle node already has the

ilffOrlnation being comnmnicated as ill the serial version. For simplicity however, the solver uses

the same COlnnnmication scheme for ally size computational lnesh (inchlding the 1 x 1 lnesh).

AS SOOII as lllOre tllan one node is used, then not only does periodic boundary infornaat.ion need

to be comnllmicated (tile B's ill figure 6.1), but in addition, the outer porinleter of interior grid

points assigned to each node needs t,o 1)e COlnlnuilicated to its lleighl_oring nodes. The alnounl

of ilffOrlnation to be comnlunicaled depends upon tile MESA schelne's siencil size and depl.h.

which varies with the algorithln used. For example, a c2o2 MESA schelne will require naore

data t,o be colnnlunicated than a c2ol MESA scheme because each grid point contains Ilml'e

information. Whereas the c,qo0 MESA scheme requires the sanle COlnmunicalion as the c2ol

MESA schenle because c,qo0 requires 4 rows of interior grid points and c2ol requires one row of

4 data elelnents at a single grid lloinl,. Recall thai, some of 1,he significant advalliages of slnaIl

stencils is t,heir ability to be easily lllal)ped to colnlAex geonlelries and their high rcsohit.ion

capabilil, ies.

hi figure 6.2, the 5 x 5 stencil for the MESA c5o0 schenle has grid points labeled "X". The

grid point desigtlated ""A" is to be tin/e advanced and requires the grid point infornlation labeled

"'X". Notice in this case that hot'ore "A" Call be advanced in time, node 1 must conlnnlnicaie

with nodes 0.2, and 3 to gel the necessary grid point ilfformation (due t.o the distributed memory

nlodel). A larger stencil would require even nlore infortnatioli to be communicated. The MESA

schemes that use derivat, ive information at the grid points such as c2o3 or c4ol. lnay have a

smaller sl,encil, bill will require more inforlnation to be conlnnlnicaled since lll()l',{" information

is stored al each grid point; The scalability studies in llle nexl, chapter examine the parallel

l_erfornlallce of some of l]leSe schenles. Ill ally eVell|, before a lime advance of an interior grid

point near the edge of a node's domain nlay occur, the neighboring data from the lleighborilig

l|OdeS lll/lSl I)o COllllll/llliCa|ed.

It is often desirable t,o send fewer, but larger nlessages than it is to send many smaller

NASAJTM-- 1999-209182

1,54

t (_,!,i¢ lit h't,., >_l, [] lit, rr!t+l-_,a
Zl

zI
J
Fi

"1

sl

"_ V" _ _ It"i/"

-i _'i;'i'¥'+F

1

:_ (FLO' (.0!

'::l I:::l _11":1 _ I::ll"l I:::l'::l 3t I::l _1_ I::l':::l :! I::l

Illlil:ll '--I I1: l_:['lli::_

Figure 6.2: Nearest Neig]lbor (_onmmnicaiion

niessages in a parallel systeni since each niessage has au associated latency thai rail seriously

degrade floating point l)erforniance. One way to send larger 1)ui fewer messages is to include

lhe corner inforniaiion in all imlJlicit lilalilier. I/aiher than explicitly eOllllllUliicalillg corller

inforlnatiou as [r¢)ni node 2 to llode 1 in the last exainl)le figure ft.2, it is possible to iinlflicitly

COlilliiuiiicate the corner by]iaVilig all liOties coniniunicale to their left iiodes shnultaneous]y,

then coniniuuicaie to t lieir right nodes, then coniinuliicale Io their top and then finally Io their

bottom, ill that or(ler, hi this case, the llO(les seiid not, just the interior grid points tout, abler]

in t lwir resi)eclive ([onlains, hut also a t'e',v extra cohinlns of acijacent grid l/ohlls thai are iiol

defined wilhin their doniaili. This has ihe effect of COiliiiiUili('at,iiig ltle corlier hiforinatiou as

shown iii figure (J.'l.

In figllrt _ I').;I only the corlier int_orniaiion fl-oln node 7 heing iniplicitly conlniuiiical_,([l,(J li()de

I is shown for sinil_licity. Notice that all iio(]es have an extra lneniory I)ufl'er Oil the i)erillieler of

tlwir defiued nodes so tliai they can receive alicl store grid pohii (laia [ronl neighhoring liodes.

Till" arrows indicate the direction of iil[()rlilatiOli flow and the llUlllbers rel)resent t_rolii which

node the inforilialioii canie. The corner o[lio(te 2, "(!l'" is seul to no(h" 3, wliere it is labeled

"('7", hut in addilion, tile grid [iohil lalwled "'J 1"" iu llw I)ufl'er _)1'uod_' 2 i_ seiit l(J liO(le ;f,

NASA/TM-- 1999-209182

155

8 IGrld iP_irui._ P,_l' Ifllit [11 al'v:d

--)

fi- r-

{ 1

I I

Figure 6.3: Synchronous (:omnumicalion, hnplicit (!orner Exchange

where it is labeh'd "J2". At. this point, grid point "J2"" is junk information since it came frOnl

the undefined grid point "a 1". Thell during the up/down send operation lhe grid point laheled

"'(_2"" in node 3"s buffer space, which is the corner of node 2 is sent to node I where it is [aheled

"'C3". Even though it. is not shown ill t.he figure, afler the send operations complele, lhe grid

point, labeled "S2"" in node a actually gets the fop-right interior grid point of node 0. The same

occurs for all lhe corners in l.he conlput.ationa[domain.

Notice /.hat. t.he lltllllbe[' of separai.e com|nunications is Ctl/ ill half using this procedure.

Norlnally. it. wouh[be necessary 1o connnullicale left, right., up, down, down-right, down-left, up-

right, and up-left.. However, using tile slightly larger conmmnicat.ion buffers and conmmnicating

this information synchronously (not doing computat.ions and communicat.ions simultaneously)

in l.wo steps (left/right. and up/down) results in the corners be implicitly communicated. This

eliminates tile need to explicitly send corner inf()rmat.ion which would double the number of

messages sent.

The periodic boundary data in the hi-periodic open domain l_rohlem interestingly call us,, the

same communicat.ion scheme t,o avoid separate message passing of corners. This works deslfile

tile fact tllal l,]le boundary data is not conlllnlnicaled Io lopologically neighl_oring nodes. In

NASA/TM-- 1999-209182

156

this work it was possible therefore to treat all tlle nodes with tile same communication logic.

6.4 Asynchronous Communication

While tile left/right and up/down communication ordering can effectively exchange all necessary

information, it is necessary to do that in two distinct steps. If left, right, up and down are done

simullaneously then the corner information will not be communicated properly. It is, however,

desirable to send all the information simultaneously on some parallel systems. In particular, the

SGI ORI(;[N2000 on which the parallel results are generated for this work have an additional

communication processor that permits silnultaneous computation and communication. Message

passing libraries may then use asynchronous communication calls to get maximal floating poin!

performance.

in lh,, case of the MESA schelnes this requires adding explicit communication calls for

the corller information. To communicate asynchronously (silnultaneously send all data and

perform floating point operations), each node must send data left, right, up, down, right-up,

left-up, right-down, and left-down simultaneously. Despite the doubling of messages compared

lo the synchronous case. significant improvement in performance can be realized with lhe MESA

schemes. This is achieved by advancing the interior points of each node that do not depend

upon information from neighboring nodes while at the same tinle communicating the outer

perilneter of inlerior grid points. For a large enough interior, lhis effectively elin,inal.es waiting

for connnunicat ion to complete. By the t.ime the interior set. of inlerior grid pohll.s has completed

advancing, the information required for advancing the perinwter inferior grid point.s is doric

t ransferring Dora the neighboring nodes.

Larger stencils reduce the number of inlerior grid points on a giwm node thai may be

COlllpllted wilhoul information from neighl_oring nodes.]towever, the Hermitian MESA schellles

serve to shrink tile stencil and increase lhe sel of interior grid poinls on a given node that are

independent of neighboring nodes. The ltermitian MESA schemes also increase the amount of

work per grid poil|l since the derivative data is advanced as well. Therefore, the Hermilian

MESA schemes seem t.o be good choices for parallel apldications. Some results on lhe efficiency

of various lh'rnlitian schemes are shown in sect.ion 7.3.

NASA/TM--1999-209182

157

6.5 Generating the FORTRAN Parallel Propagation Code

Olle of the overall goals of this research has 1)een to fully autolnate the code generation pro-

cess. Therefore, tile parallel FORTRAN code is also amomatically generated and only requires

speci_ing the dimensions of the Inesh of nodes. The (tolnain decomposition is easily automated

because a Cartesian grid mesh is used. l, oad balancing the hi-periodic open domain problem

is achieved by assigning all nodes approxilnately the same mmlber of grid points. Each FOR-

TRAN module has a corresponding Mathemat ica module and all modules communicate through

a FORTRAN common block. The parallel extension relied extensively upon the automatic code

generation Mathemat, ica modules developed for the serial solver code. The extension to parallel

essentially was an exercise in ntodifying local coordinate systems and array dimensious.

Specific l,uning issues will vary depellding upon the target architecture. For example, on

syst,elns wit houl asynchronous cotnnnnlicalion hardware, it would be optilna] to use the nlethods

of section 6.3. Also. evaluating the fill grid points near walls requires an additional computational

procedure and therefore the nodes wil.h an excessively large set of fill l)oims may be delayed.

In a(Idilion, stee I) gradients may require adaI)tive grids or a(lal)t.ive algoritlmls for lheir prol)er

resolution, both of which may unbalance the computational load between nodes. 1! is likely

some compromise solution that minimizes these effects will need to I)o developed later.

Nonetheless, the COml)lete aut, onmtion of the grid generalion, algorithm generation, code

generation, and parallel extension, is an advancomenl in ('AA that may l)e used to advantage

in the development of high accuracy and high resolution solver codes.

NASA/TM--1999-209182

Chapter 7

Numerical Results

In this chapter, some exanlple problems have been chosen which have analytical solutions that

permit detailed examination of the accuracy and efiqciency of the MESA alger,thins. In addition.

lhe linearized Euler equal,oils describe a conservative physical syslelll and tllerefore, ill lhe

case of no energy sources or sinks, the total energy of the systenl is coIlstalll ill t.inw alld cal,

provide an additional check on lhe numerical sta])ility and dissipation of the SCllellleS. The

numerical slab,lily of lhe algorilhms can be determined analytically for open domain (no walls)

problems, but the addition of complex wall geometry complicates the analysis. Techniques such

as the Matrix Method or long I'tnming numerical experiments [100] are hrute force methods of

determining stability. The Matrix Method requires reducing lhe algorilhms to a linear system

of 'qualions in which lh_' oigenvalues o[' lhe matrix are exa,uined. If all lhe eigenvalues are less

lhan on, _. lh_ _ method will, that 1)articular geometry is mm,erically stable. Howew_r. for lypical

problems the matrix is simply too large to do lhis efficiently, even in Mathematica. in this work.

the MESA algorithms will, wall boundaries are tested will, long rtmning experimenls.

Both lwo and three-dimensional results will be discussed and will demonslrate t lw significant

[mprovenletlt in porfortnance of lhe MESA schenms over traditional numerical methods. Filmily.

the two-dimensional MESA schemes are tesled for their scalability on a lypical MIMI) parallel

COIllplll el'.

NASA/TM-- 1999-209182 158

159

7.1 Two-Dimensional Problems

Most work in CAA is accomplished in two-dimensions today because of COmlmter costs and the

complicated grid generation required for complex geometries. And, perliaps most iml>orl ant.ly, il

is necessary t,o validate the new concepts in t.wo-dimensions before extension t.o three-diniensions.

For these and other reasons, the t.wo-dinlensional MESA schelnes were developed and veritied

first.

The first two-dimensional case to I>e analyzed was the biperiodic open domain problem

which tests the propagation, ef[iciency, and stability of the MESA schemes without geomelry.

Next., the rotated box cases (.esl the stabilily and accuracy of the MESA schemes with straight

wall boundaries. Aiid finally, the circle cast" tests (.lie stability and accuracy of the MESA

schenies with curved wall I)oundai'ies. All cases were successful in deutonstrating the accuracy

and stability of the uiethods discussed in this dissertation. An overview of the geonl('lry and

fill point nlapping for the test cases with wall boundaries at low grid resohttion is shown in

figure 7.1.

7.1.1 Bi-Periodic Open Domain up to 2.()'t_ order accuracy

The hi-periodic open domain problem is one in which the physical domain is a unit square

([-1, 1] x [-1, 1] × [0. Tit. The sohl(.ioi, of th(" linearized Euler equalions ill t.his case is assun/ed

to be y-periodic (top and bottoni of box rep('at.) and x-periodic (left and right sides of 1)ox

repeat). Using separation of variables with l)eriodic boundary conditions, on the linearized

l:;uler equation system:

0 u 0 u O u /-)t)

i)---[+ M,. Ox + jl's ?)tl + Ox = 0.

?)v _I Oc &, 0p
0--7+ _ "_ + _w"N + g = 0,

Op 11 i)p ?)I> ?)u Or'
o-7+ _ "_ + <%_ + _ + o-7= o,

(7.1)

with boundary conditions •

1,(1. q 1) =/,(-l,y,/)

it(1,!l,t) = tit-l,!/,/)

NASA/TM--1999-209182

160

_J mmm

Y

i

Figure 7.1: Ro!ated Boxes and (!ircle Low t_esolution ('ases

NASA/TM-- 1999-209182

161

v(l,,q,/) = v(-1,,q,:t)

p(.v, 1, t) = t'(x, - 1, t)

u(;r, 1,t) = u(_,,-l.¢)

t,(a:, 1,1) = t,(a:,-1,/)

provides the following analytical solution:

1,(_, .q, t) = cos(,'r/v/2) sin(Tr (- (M.,.t) + x)) sin(rr (- (M:/t) + ,q)) (7.2)

cos(7r (- (M.,./) + a')) sin(7rt x/2) sill(,'r (-- (M:jI) + .q))

, (x. :tl.t) = v_
(7.:_)

eos(,'r (- (Mut) + !,,)) sin(_t v/2) sin(_ (- (._L,.t) + .r))

v(.r, ,q, l) = v_ (7.4)

In figure 7.2, the slopes o[" the plots are determined I_y tile accuracy of each algorithm. Next

t.o each algorit|ml in the legend of figure 7.2 is the formal order of accuracy in space and t.ime for"

the MESA scheme being gral_hed. The notation "c2d3'" in the legend represents the e2o3 MESA

scheme with a 2 × 2 sttqleil that has (3+ 1)'-' data values per grid point for' each primitiw" variable.

The actual data for these plots can be found in tables 7.1, 7.2. and 7.3. The first column in the

tables represents the number of grid i)oinls per half-wavelength. The second column represents

tile lmmt)er of time st(?s. And the Hnaining cohmms show the nlaxinmm error" in tile pressure

for each MESA scheme. Notice that the 23 "d order e2ol| scheme is l)erforming worse than tile

19*h order c2o9 scheme due t.o the round offerror from the high order spatial interl)olatioll. This

effect is known to occur in divided difference formulations [89] arid while api)roaches for" reducing

this effect exist, it. has not currently been pursued in this work. The n*_ed for higher precision

floating point hardware is confirmed in figures 7.3 and 7.1 where the higher order schemes at, _

rendered ineff_wtive due to the round-off error. The higher order ltermit.ialJ methods are more

comtmtationally efficient than t.h_" lower order methods and require less memory 1.o achieve a

given maximum error. This _,fficiency is the result of the increased resolution of the higl,'r order

ttermitian MESA scllemes whicl| do not ro(]uire as many grid points per wavoh'ngth.

Nolice that liw Iligilesl order scheme in table 7.3, t.h(' 2(,)t:' or,h'r c2ol 1, actually rosolw's well

NASA/TM-- 199%209182

162

O

o -2

• -4

-6
E

O
_Z -8

o -i0

o

-12

O

Error VS. Grid Density

"_ " __ 1

x,

\

.5 , _ -.2
\

fi \ \\ " I 3 '. 2

_6 *"

0 2 4 6 8

Log 2 of grid points per wavelength

ALG. ACC.

_-_c2di I 3

_2d3 t 7

_c2d5 Ill

-_ _2dV I is

2 c2d9 I z9

+b_2dll[23

Figure 7.2: Maximum Ai)sohne Error at time=10, with com,ectiou Mx=My=l

wilh two wavele.gths per grid point! This is not a contradiction of the Nyquisl criterion [85],

however, since there are actually more than 4 data elenlents per wavelength: The c2o14 ller-

mit, ian MESA scheme has additional derivative information at each grid point as discussed i.

chapter 3.

7.1.2 Rotated Box at 2 ''t order accuracy

As a tesl of the wall boundary formulation, a box was rotated at various angles relatiw" to

lhe (!artesian grid and grid resolution studies were performed on each rotated case. Their

analytical solutions were derived using separalion of variables in which no convection is present

(] I,. = 3 l,j = 0).

l:or the unrolaled case (box walls parallel to the Carlesiau axes a.d positioned directly on

the ('artesia. grid points), t)otmdary conditions on the left and righ! walls at-<+:

l,_.(x.,q,t) = O.a.=-l,l,-l>y<l,t>O (7.5)

u(.r,!l.t) : 0, a.=-l,l.-l_>y_< 1./k0 (7.6)

<,.(.r,g.t) : 0. a'=-l.1,-I _> y_< 1.l_>(} (7.7)

NASA/TM-- 1999-209182

163

¢h

-,--I

0

0

0

o

o

0

-2

-4

-6

-8

-i0

-12

Error VS. FLOPS

\

•\ ",

._ ,_ ..2

0 1 2 3 4

Log i0 of the MFLOPs required

ALG. ACC.

_Ic2dl 3

c2d3 7

c2d5 ii

-_-c2d7 15

c2d9 19

_c2dll 23

Figure 7.3: Maximum Absolute I']rror a! Iime=10, with conveclion Mx=My:l

f_

-,.q

O

O

c_

0

(D

©

0

-2

-4

-6

-8

-i0

-12

Error VS. Memory Required

$

\<,_..2 ---4

\5.\- ._.2
X\

._ _ .2

. _ ' _,:1.5 4 --"4- : t¢_'-

0 1 2 3 4

Log i0 of the memory (KBytes) required

ALG. ACC.

_-lc2dl 3

c2d3 7

c2d5 ii

-_ c2d7 15

c2d9 19

-_bc2dll 23

Figure 7.4: MaximumAbsohfle Error at time=10, wil,h conveclion Mx=My=l

NASA/TM--1999-209182

164

illll

2/4 100 4.19313D-01
1 1(}0 5.98758D-02

2 10W 8.79878D-01

4 200 8.96398D-01

8 400 9.00479D-01

16 800 8.94956D-01
32 1600 8.34516D-01

7/4 1000 1.55423D-01
1 100() 8.40688D-02

2 1000 2.38576D-01

4 2000 2.43055D-01

8 4000 2.44184D-01

16 8000 2.44466D-01
32 16000 2A4537D-01

2/4 10000 6.55393D-01
1 10000 2.16718D-02

2 10000 7.64079D-01

4 2()000 7.784251)-01
8 40000 7.82039D-01

16 80000 7.82944D-01

32 160000 7.831711)-01

n c2o0 c2ol c2o2 c2o3 c2o4

4.19313D-01

5.98758D-02

7.48778D-01

2.17517D-01

3.23784D-02

4.18709D-03

5.29728D-04

1.55423D-01

8.40688D-02

2.38576D-01

2.13560D-01

8.25183[)-02

1.31469D-02

1.71994D-03

6.55393D-01

2.16718D-02

7.64079D-01

7.78425D-01

7.55472D-01
2.88551D-01

4.49201D-02

1.65510D-01

2.74867D-02

2.65588D-02

9.07266D-04

2.90656D-05

9.16133D-07

2.87272D-08

9.83802D-02

8.40688D-02

4.65859D-02

2.08231D-03

7.29347D-05

2.39209D-06

7.65553D-08

4.01590D-01

2.16718D-02

7.44662D-01

7.40483D-02

2.50441D-03

7.93319D-05

2.48506D-06

7.66908D-02

4.863091)-04

1.44219D-04
2.034511)-06

1.62115D-08

1.27500D-10
1.90326D-12

1.87211D-01

3.49359D-02
5.78433D-04

5.52436D-06

5.17616D-08

3.68410D-10

1.01852I)-10

3.12759D-01
2.06896D-02

2.02987D-02

1.751171)-04

1.40537I)-06

9.37781D-09

1.06107D-08

4.94527D-02

6.40222D-06

1.34963D-06

2.83584D-09

5.51315D-12

1.44773D-13

1.18994D-12

1.90080D-01

1.64820D-03

2.55880D-0G

9.29425D-09

2.25t19D-11

6.28685D-11

9.98046D-11

3.09936D-01

6.08435D-03

1.144981)-04

2.40618I)-07
2.96213D-09

6.050231)-09

J'at)l(" 7.1: Maximum Absolute Error of 2D Algorithms at time=10,100,1(10(), 1'_ - 9 °' order

And on the top and bottoln walls)he I_oumlary condilions are:

p,j(x,g.t) = O,-l>a,<l,y=-l,l,t>_O (7.8)

u_j(x,g.t) = 0.-1 >x< 1,y=-l,l,t>_O (7,,())

c(x,g,t) = 0,-l>x<l,y=-l,l.t>0 (7.10)

which are t.h(> direct result of the equations 5.1.5.2 . and 5.3 when the box is no(rotal.ed.

Thes(" l)oundary conditions are not multidimensional in the sense o[" ('Oul)ling (he u and c v(,loc-

ities.

The analytical soluiion to this problem is:

= - :,))
('os(,-r v) sin(v/:Jrr/)sin(,'r,r)

u(x,g,t) = _ (7.12)

<'os(,-rx) sin(v_/) sin(n-!,,)

t'(x, !I, 1) = V/_ (7.13)

NASAJTM--1999-209182

165

inn 11
2/4 100 1.3:3692D-02
1 100 1.01308D-06
2 100 5.49155D-09
4 200 2.65099D-12

8 400 2.85993D-13

2/4 1000 1.27864D-01
1 1000 3.49923D-05

2 1000 1.30081D-08

4 2000 1.92279D-11
8 4000 2.41547D-11

2/4 10000 3.10413D-01
1 10000 2.644691)-04

2 10000 1.53566I)-07
4 20000 1.45415D-09

8 40000 2.60486D-09

c2o5 c2o6 c2o7 c2o8 c2o9

1.00134D-03

1.98289I)-08

1.64495D-11

3.54161D-14

3.04090D-13

1.16246D-02

6.17069D-07

4.54192D-11

1.52294D-11
2.41659D-11

1.06928D-01

4.82240D-06

.(I.61101D-10
1.39003D-09

2.60449D-[.1.(t

5.34796D-05
2.59540D-11

1.1,1436D-13

5.5,1556D-14

3.31901D-13

6.08718D-04

6.79935D-09
5.56258I)-12

1.55838D-11

2.39646D-11

5.98842D-03

2.86811 I7-08

4.34892D- 10
1.39202 D-0. _)

2.60512 I)-09

2.031121)-06
1.88191D-12

2.78083D-13

1.97731D-13

5.62439D-13

2.46354D-05

4.83705D-11
5.83170D-12

1.51723D-11

2.47488D-11

2.55310D-04

3.17661D-10

4.38126D-10
1.:{9189I)-09

2.605781)-09

2.21581D-0_
1.17385I)-12

8.64669I)-13

6.28071D-13

1.30090D-12

4.04596D-07

1.17557I)-11
7.37743D-12

9.19279D-12

2.67018D-11

5.86179D-06

2.45649D-10

4.34286D-10
,t.34286D-10

4.40577D-10

Table 7.2: Maximum Absolute Error of 2D Algoril.hms at I ime_- 10,100,1000, 11 t/' - 19 t_' order

The box is rotated about the origin of t.h() (!artesian grid which is located at t.he cenler of

lhe box. II.s analytical solution is found by simply rol.ating lh0 (-oordinat_,s ill _'qllation 7.11 as

well. The velocity boundary con(lit.ions are inherently mullidimensional in the l'otal_d case as

discussed ill chapter 5.

Table 7.4 shows the" maximum ('rror in the pressur, _ varial)l_ _ from using the c3o0 M|'_SA

scheme applied 1o l.h¢' box rolat.ed 1o 5 difl'erenl positions. Tile [il'sl cohltlm of tire tabl(' is the

number of grid i)oints per half-wavel,mgt.h.

Table 7.5 shows l.he change in total system energy as a fractitm of l]l(" initial l.ota] sysl('lll

energy. The total syst_'nl energy should not change within th(" rol.at.('d box: 'l'h(- ratio should

always b,' 1. The Iolal ellel'gy is t ho Sllllllllat.ion of 1_(.I",!1)"-'q- tt(a'. }/) 2 + _,(.t'. !1)2 evaluat_.d at all

itlterior alld fill grid i)OilltS.

7.1.3 Circle at "2'"l order accuracy

A more complicated geometry in two-dimensions is the unit circle. Its orientation to llJe grid

lines ('ov('rs all angles r(_sult.itlg in IIlatly lllore uni(lu_ _ I)otm(lary condition equations sill('_" l.he

direction of l he norlllal and l allgellt vectors on the circi_'s walls vary at all Iocali<)lls.

It. t.oo has an analytical solut.ion which is dev,'lop,'d as follows. I"irsl, 1.]1,' lin,'ariz,'d t;ulov

NASA/TM-- 1999-209182

1(56

itlll 11

2/s lOO
2/4 100
• 1 100

2 100

looo
2/4 lOOO

1 1000

2 1000

2Is 10000
2/4 10000

1 t0000

2 I0000

c2o10

2.29965D-03

4.48519D-10

5.99623D-12

2.19150D-12

2.32224D-03

7.56043D-09

1.36526D-11

9.60959D-12

2.66386D-01

1.09827D-07

3.46658D-10
4.49754I)-10

c2oll

2.47006D-04

1.31774D-10

1.37090D-11

6.59328D-12

2.94998D-04

6.57392D-10

3.80372D-11

2.50860D-11

2.63985D-02

8.79307D-09

3.32700D-10

5.24886D-10

c2o12

2.05753D-05

4.10446D-10
6.43737D-11

4.292441)-11

7.83313D-05

5.30117D-09

3.48912D-10

2.05130D-10

1.41920D-03

8,15401D-08

1.08017I)-09

1.90765I)-09

c2o13

1.79199D-06

1,56559D-09

7.08256D-11

7.90291D-11

5.41336D-06

7.33124D-09

4.21926D-10

1.68643D-10

8.52095D-05

4.70767D-08

1.78962D-09

1.12289I)-09

c2o14

1.67255D-06

5.34823D-09

3.81599D-10

2.36003I)-10

8.72029D-06

2.22549D-08

2.32803D-09

9.40085D-10

4.02444D-05

9.65443D-08

5.42603I)-09

3.16877D-09

Tal)le 7.3: Max?Inure Absolute Error of 31) Algorithms at tinie=lO,lO0,1000, 21 "_ - 29 th order

1 (l _0

($.00340E-01

1(i 9.32801 E-03

32 2.16148E-02
64 (i.527fi 1E-03

128 l.(ifil21E-03

256 ,1.12058E-(),1

i 7r

(I -- _,;

5.88561I)-01

2.78385D-02

2.51592D-02

7.24661 I)-03

1.84735D-0:_

4.64566D-04

-- 7r

7.29709D-01

1.69012D-02

3.03067D-02

9.,13153D-03

2.43511D-03
6,10(}751)-04

(t z _-

9.72177D-01

1.18011D-01

3..()5514 D-02
1.25i)27D-02

3.1 .q933 I)-03

&22738I)-04

7r

o= 3
7.792071)-01

6.321801)-02

3.41046D-02

1.09241 I)-02

2.841231)-03

7.12248D-04

'[aide 7.4: Maxinnun Error in p at (=10, c3o0 s('henie al)l)li('d to box rotated 1)y a

equal ions without convection are expressed as the wave equation,

O'-'p ?)21, 021,

?)t'-> Ox'-' Off-'
(7.14)

Then, this is r('v,'rillen into polar coordinates [113],

O'-'p 02p 1 ?)p 10"-'p

01--7_,= ?h_ + j-.O_-Z+ r--5,?)0-=_,_,
(7.15)

with 0 < r< 1,-rr < 0 < rr, l > O. And with the initial/boundary conditions.

14 1, O, t)

p,.(i,O,t)

p(r, 0, 0)

= O,-7<O<,'r,t>O,

0,-_ < 0 < ,-r,l >0,

5J,(,_r)

V/7,L)(A)
--.0< r< 1.-_ < O < ,'r

(7.16)

(7.17)

(7.i_)

NASA/TM-- 1999-209182

167

1

t_
16

32

64

256

(t=0

1.31769D-01

8.14386D-01
9.88311D-01

1.00151D+00

1.00134D+00

1.00072D+00

16

1.57350D-01

&72280D-01
9.90026D-01

9.99237D-01

9.99869D-01

9.99931D-01

8
1.02348D-01

8.22221D-01
9.81165D-01

9.98688D-01

9.99895D-01

1.00000D+00

4
3.54850D-02

6.50197D-01
9.77070I)-(}1

9.97840D-01

9.98897D-01

9.99518D-01

('1 _ "rr

2.339081)-02

7.22285D-01
9.75765D-01

9.98150D-01

9.99860D-01

9..q9997D-01

Table 7.5: Energy Ratio (should be 1) at t=10. c3o0 schenie applied t.o box rotated by a

p,(r,O,O) = 0.0<r<l,-,'r<0<,'r (7.19)

the analytical solution is:

5,kl(AI') cos(At)
l,(r,O,l) = (7.20)

v/-_.]0(a)

wilh A = 3.83171.

.]u is llie Bessel function of the first kind of order 0 and il is defined hy:

± -'"/')-'"J"(*) = _ 7
t7 =()

(7.21)

']'lie]inearized Euler equal, ions illeludc the u and _'variables which are nol part of lhe wave

equation 7.14. Bill. the p variaMe will have sohlt.ion 7.2(t and can l)e tls_'d to tesl tile accilracv

of the algorithnis if the addil.ional inilial condilions are assumed:

u(.r,y,O)=O,-I <.v< l,-l_<y_< 1

c(.r.!l,O) = 0.-1 < a. < 1,-1 _< y _< 1

Table 7.6 shows lhe lnaxinitini error ili i,ll__pressure variable fcolii within the circle ai 3 nlonlenls

in lime. Tile firsl coiunni ill the i,able represenl, s l]le iiuinl)er of grid poinls per haif-wavelengili.

Table 7.7 shows the change in iolal energy of lhe syst,em within the circle. As in lhe roialvd

box case, the ral.io should always be 1.

NASA/TM--1999-209182

168

1

8 2.29533D+00

16 6.05969D-02

32 2.28263D-01

64 5.96043D-02

128 1.50125D-02

256 3.85009D-03

t = 10 t= 100 t = 1000

7.03234D+00

1.12127D+01
2.02830D+00

2.15448D-01

3.44447D-02

7.47578D-03

3.67081D+00

3.61856D+00

1.92185D+00

9.27343D+00

2.46248D+00
NA

Table 7.6: Nlaximum Error in p at t,=lO,lO0,1000, c3o0 scheme applied 1o circle

I

3.4:1144D-01

16 9.53462D-01

32 9.937_8D-()1

64 9.99809D-0 l

128 1.00021D+00

256 1.00004D+00

t= 10 t= 100 t= 1000

.728:12D-04

3.80642D-01

9.30932I)-01
!).93336D-(JI

9.99340D-01

9.99928D-01

8.70.%,1I)-04

7.56545D-{},5

4.81021D-01
9.34796D-01

9.94067D-{)1

NA

Tabh, 7.7: Energy Ratio (should be 1) at t=10,100,1000, c3o0 scheme applie(l to circle

7.1.4 Unrotated Box up to 11 °' order accuracy

The wall boundary forlnulalion for methods higher than 2 ''_ order have not provided stable

solutions, so far, on ('artesian grids with unaligned wall boundaries. This is uo| llllexpe('|ed

since the highest accuracy wall boundary scheme reported in the literature on a (_art,esian

grid is ::I"d order and uses Lagrangian interpolation [45]. Most ('artesian grid based boundary

conditions are 1_t order accurate and some new work using a finite volume formulation is 2_'_

order accurate [27].

tlowever, the case in which (lie geolnel ry is aligned wit h the grid does provide st aide solllt ions

lip |o at least ll t/' order accuracy. The reslll|s for the illlrot,ated box problem are shown in

tigure 7.5. The tegelld ill this figure shows tile algorithm type and its accuracy. Notice thal the

high resolution of |,lie Hermitian scllellles with solid wall homldaries in tiffs case is similar to the

hi-periodic open domain results of section 7".1.1. These results sugges! there may be a way to

extend this approach to lhe unaligned wall boumlary case which will maintain high resolutiou

and elticiency.

In tables A.I, A.2, A.3. and A,-1. the maximum error of the l_ressure ill the ulH'olatcd I_ox

is shown at various t ime._ for various grid resolutions. The em_rgy should not chaug_' wit h time

NASA/TMI1999-209182

169

0

0

0

0

0

o

0

-2

-4

-6

-8

Error VS. Grid Density

"5."_ "13 __ . v
"\ "_\ I \ - .2 _ I

\ \ , 3 .2
\ -.

\ 5 "" \ "

• \ \ -.

\ -.,Am\ \

\

\ \
\

\ \
\

\\.4 \

2 3 4 5 6 7

Log 2 of grid points per wavelength

ALG. ACC.

 c2dl I 3

.2 c2d2 I s

c283 I V

.4 2d4 I 9

5 c2d5 i i i

Figure 7.5: 1Tnrot ated box grid resolution studies, no convection, time: 10

inside the box and therefore/,he energy ratio shown in the last column shouhl ahvays he one.

7.1.5 Complex Geometry Demonstration Mappings

These mappings are very preliminary and are i))clu(h'd merely Io (lell]onsl, rat,e t,]l(' pol,cl]tial

flexibility of using l,he Cartesian grid mapping schemes developed in this dissertation.

In figure 7.(5, an ammlar duct is described using 4 parametric curves, one per ('ach half circh'.

The grid points inside tile inner circle are laheled as boundary poinls and (hose grid i)ohlls

whose stencil intersecls eilher circle are lhe fill points indicated by small open circles, and the

dark circles are (,lie interior grid pohll, s that call be tinle advanced using the standard MESA

schenles with st,encil width less than 4. The arrows indicate where tile fill points are mapped to

the wall using the automated met hods discussed earlier in chapter 4. The shaded boxes indicate

which data is used t,o interpolat,e the fill points in thai hox and the mmlher indicates th_ + or&_r

in which the fill points are solved as discl,ssed in section 5.2.. Whe. a shaded box overlaps a

neighboring box. the lower nunlbered box's fill points are treated as an interior grid poim in

the higher ntmll_ered hox since those fill points will have been previously determined using t,he

lower mmd_ered box's spatial inl,erpolanl,.

In figure 7.7. a grid for the three airfoil cascade is labeled with a grid spacing ot'8 grid

points per uni! hllerva]. I, figure 7.8. th+' fill points ar_ _ Inapl_<,d to the wall bOulnlaries. If the

NASA/TM--1999-209182

170

Rotation Angle = 0

BBBBBBBBBBBBBB_BBBBBBBBBBBBBB
BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBB]B_BB BBBBBBBBBB BB
BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBB_
BBBBBBBBBB_
BBBBBBBB_
BBBBBBB_-_
BBBBBBB__
BBBBBBB/_6__
BBBBBBB_a_dN_]_

BBBBBBtt.¢_
BBBBBB__
BBBBBBB__
BBBBBBBB_
BBBBBBBBB_.@_-#-
BBBBBBBBBB_#
BBBBBBBBBBBB-B_
BBBBBBBBBBBBBB]
BBBBBBBBBBBBBB]
BBBBBBBBBBBBBB]
BBBBBBBBBBB_]_
BBBBBBBBBBBBBB}
BBBBBBBBBBBBBB

_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB

BBBBBBBBB
BBBBBBBB
BBBBBBB
BBBBBBB
BBBBBB
BBBBBB
BBBBBB

_g_ggg
_BBBBBB
__/BBBBBBB

"_"I_BBBBBBB
_PM[¢_I|_]_'BBBBBBBB
,_lm_BBBBBBBBB
:_[BBBBBBBBBB
_SUBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB

Figure, 7.6: Annular D,ct Fill Point Mapping in 2D, iun=8

"rh "rh " '_ _

Rotation Angle = 0

[d

_r

I_rIIIII__
II!IIIIIIII__#
IIIIIIIIIII_¢
II_IIIIII_#

'_'N___
'____

Figure 7.7: Airtbil ('asca,b (;rid Poi.t Laheli.g i. 21). iu.:t_

NASA/TM-- 1999-209182

171

Rotation Angle = 0

BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBBB/_BBBBBBBBBBBBBB
BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBBBBSBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBB_q
BBBBBBBBBB_Bf%Q_
BBBBBBBB_
BBBBBBBB_ML_
BBBBBBB_'_

BBBBBBB_#4_]_
BBBBBB_

BBBBBBtt.@-_,!_I_m
BBBBBBB_-_,_,If_,_.
BBBBBBB__
BBBBBBB_
BBBBBBBBIS"t[I$_:_t
BBBBBBBBBB_
BBBBBBBBBBBB"_
BBBBBBBBBBBBBB1
BBBBBBBBBBBBBBt
BBBBBBBBBBBBBBI
BBBBBBBBBBB_B.]_
BBBBBBBBBBBBBBt
BBBBBBBBBBBBBBI

BBBBBBBBB
BBBBBBBB

i_J_BBBBBBBB
_+_BBBBBBB
_<_j_BBBBBBB
__BBBBBBB
o-_BBBBBB

_9}_8BBBBBB
9-/BBBBBBB
#-#-_BBBBBBB
_#-%d/BBBBBBBB

##_h_BBBBBBBBB
_BBBBBBBBB
Hg_qBBBBBBBBBBBB
IBBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
_BBBBBBBBBBBBBB
IBBBBBBBBBBBBBB
_BBBBBBBBBBBBBB

Figure 7._: Airfoil Cascade Fill Point Nlal)l)ing in 2D. iun=S

grid point resohltion changes lhen the set of fill points will change iherefore a new mapping is

required at each grid resolution.

7.2 Three-Dimensional Problems

Many interesting and challenging acoustical I)rol)lems are inherently three dimelmional, such as

the generation of noise in die jel plume from a COml)lex three-dimensiolml shear layer and tile

propagation of (hl('t nlOdeS from the fan out the inlet. Some researchers are atlempling 3D

simulations through the use of 4 th order time accurate (!Oml)aCl Difference schemes Oil large

lmrallel systems [81] and [N3]. ttowever, progress in lhese efforts requires improvenlel_t ill the

colnl)uter architectures and lllay require many years before the parallel sysIenls Call provi(le the

fioating point perfornlalwe required for COlnl)lete simulations. In this work, lhe MESA SC[lenleS

were extended to 3D and applied to lhe tri-periodic open domain. The results, as expected,

match the results fron_ tile 2I) cases, and denlonstrate the significant advantage of the MESA

schemes ill 3I) - namely, the high order schelnes with Hernlitian da;a ar(' very COlnlmlationally

efficieut.

NASA/TM-- 1999-209182

172

7.2.1 Tri-Periodic Domain up to 27 th order accuracy

Tilt' tri-periodic open domain problem is one ill which the physical domain is a unit. cub("

([-1, 1] × [-1, 1] × [-1, 1] × [0, T]). The solution of the linearized Euler equations it, this case

is assumed to be x, y, and z-periodic. Using separation of variables with periodic boundary

conditions, on the linearized Euler equation system:

Op Op Op Op Ou Ov Ow

0-7+ ,_i_ + _%_ + M:_ + _ + _ + _ = o,

Ou Ou '1I Ou Ou Op

Ot, 0 _' 0 _, 0 _' Op

Ou, _I Ow Ou, _I Ow Op
0--[+ _ _ o_--7 + alu _ + : : _ + _ = o,

with boundary comlilions :

(7.24)

t,(1,g, z,t) = t,(-1, y, :,t)

u(l.y,r,.t)= u(-1,y, :,t)

t,(1,y, z,t) = t,(-l,,q,z,t)

u,(l,.q,z,t)= w(-1,.q,z,l)

l'(.r, 1. :,t) = p(x,-1, z,t)

u(a'. 1. z,t) = u(x.-1, z,t)

_,(x, 1, z,t) = v(a.,-1. :,t)

u,(x, 1, z, l) = w(x,-1, :.l)

t'(,r, g, 1, t) = p(x. ,q, - 1, t)

u(.r, y. l,l) = u(x..q,-l,t)

_'(a', q, 1,t) = _'(x. q,-l,t)

w(a',.q, l,t) = u'(a'.y,-1,t)

(7.25)

NASA/TM--1999-209182

173

thentheanalyticalsolutionis:

p(x, y, z, t) = cos(v_ _ t) sin(_ (- (mz t) + ,r)) sill(_ (-- (my t) + !/)) sin(_ (-- (mz t) + :))

(7._6)

cos(Tr (-(taxi) + x)) sin(vC3_t) sin(_ (-(m.qt) +.q)) sin(,T (-(mzt) + :))

u(x, y, z,t) = v_

(7:)

cos(_ (-(mVt) + y)) sin(vC3,'rt) sin(_ (-(mzt) + a')) sin(_ (- (m z-t) + z))

.(.,', u, :. t) = ,/5

(7._S)

<'os(_ (- (m:t) +-)) sin(v/3,-rt) sin(_ (- (m.rt) + x)) sin(Tr (- (m!/t) + y))

u,(x,!l,z.t) =

(7.29)

Some of the grid resolution studies for tile three-dimensional ol)en dolna, in l_roblem are shown

ill figure 7.9, The actual numerical results of Ill(' maxmmm error ill pressure is presented in

tables 7.8, 7.9, and 7.10. The first column ill the tables represents the number of grid points

p_r half-wavelength. Tile second column represents t.ho number of t.ilne st.eps. These' results

show the same high resolution performance as occurred in the two-dimensional case discussed

in section 7.1.1. Recall from section 3.2.8 that the Recursive Tensor forln of the MESA schemes

is most efficient in three spatial dimensions and since the algorithms maimain lheir high tidelity

characterislics in three dimensions (as shown in figuro 7.9), the MESA schemes arc id('ally suit_'d

for simulating three-dimensional acoustics applications.

7.3 Parallel Scalability Studies

A test of the scalability of/h_ _ MESA algorMmls on a MIMD parallel COmlmier was perfornled.

Tile tests maintained Ill(" sam_" work load on each processor t)y prol_ortionalely increasing lh_'

size of the proldcm domain. These losls w¢'r(' performed 1o delel'min(' lhe MESA sch('m(,'s

suilal)ly for larg(' scale calculations.

NASA/TM--1999-209182

174

0

M
o -2
t.4
l..l
• -4

X -6
E

_= -8

q.-a

o -i0

O

-12

O

_2 .

Error VS. Grid Density

g

•8

_m3

1 2 3 4 5

Log 2 of grid points per wavelength

ALG. ACC.

-4Lc2dl [3

 2d3 I v

¢2dS I lz

-_c2d7 J 15

2 c2d9 I 19

Figure 7.9: Maximum AI)solme Error at t,ime:10, with convection Mx=My=l in 3D

itm n c2o0

2 1 ()(J 5.1-1980D-01

4 200 5.29551D-01

8 400 5.33243D-01

16 N)0 5.33975D-01

2 1000 7.703641)-01

4 2000 7.._12161D-01

8 4000 7.976_4D-01

16 8OOO 7.99070I)-01

c2ol

4.80224D-01

1.76508D-01

2.83486D-02

3.79304D-03

7.70364D-01

7.7.()106D-01

:{.,10102D-01

5.47790D-02

c2o2

2.19467D-02

7.92145D-04

2.58859D-05

8.23234D-07

2.87374D-01

1.21498D-02

3.93693D-04

1.24325D-115

c2o3

2.21123D-04

1.90437D-06

1.51990D-08

NA

3.36613D-03

2.862281)-05

2.28286D-07

NA

(:204

1.19505D-06

2.59532D-09

4.95182D-12

NA

1,88335D-05

3.988261)-08

6.71208D-11

NA

]'able 7.8: Maximum Absolute Error of 3D Algorithms at time=10, 100, 1 't - !)t_ order

illll II C20,)

2/8 100 1.916861)-01

2/-t 100 9.0,h%4 l)-0:{

1 100 1,84961D-()6

2 I00 -1.38.()82 I)-0. ()

2/8 1000 5.16638[)-0l

2/4 1000 1.22614D-01

1 I000 9.65_67D-06

2 I0(}0 7.1143M)-()_

c2o6

2.28186D-01

3.242601)-04

3.0,1300I)-08

1.11129D-11

3.62910D-01

1.12744D-02

1.55124D-07

2.06639 I)- 10

c2o7

1.72699D-01

1.21824D-05

2.13233 D- 10

1.59497D-13

3.64724D-01

6.13017D-04

2.92799D- 10

4.40782I)- 12

c2o8

1.22931 D-01

8.56(}03D-07

1.602_4D-12

2.45484D-13

3.81452D-01

2.34683D-05

7.56860D-12

4.542601)-12

c2o9

2.62557D-02

3.24471D-08

1.777291)-12

7.44095D-13

2.70804 I)-(} 1

4.0860.(.)D-07

8.00_<i)5 D - 12

6.,13510 D- 12

Tabh, 7.9: Maxim,m Al)sol,((,]_;l'l'Ol' of :{l) Algori(hms a()im('=10, I00, I I th - I!) th ()r(l('r

NASAFFM--1999-209182

175

iun n c2o10
2/8 100 "2.32539D-03
2/4 100 9.79661D-10
1 1{}0 4.85311D-12

2 1{}0 1.99729D-12

2/8 1000 3.64564D-02

2/4 1000 8.75725D-09

1 10{}0 1.73786D-11

2 1{}{}(} 8.319351)-12

c2oll

6.82271D-05

9.31879D-10

1.99288D-11

7.20823D-12

2.28424D-03

2.90691D-09

5.33308D-11

2.41510D-11

c2o12

4.87158D-05

2.51697I)-09

5.96948D-11

4.16325D-11

2.03252D-04

1.36760D-{}8

2.32239D-10

3.56261D-1(}

c2o13

9.34356D-05

9.52672D-09

2.22166D-10

6.67628D-11

6.65306D-04

2.87604D-08

5.28682D-10

1.48749D- 10

Table 7.1{}: Maxinnun Absolute Error of 3D Algorilhms at time= 10, 1{}0, 21 "t - 27 t/' order

7.3.1 Bi-Periodic Open Doinain up to 21 *t order accuracy

By simply rel>eating tile I>i-l>eriodic unit interval open don]ain in I}olh the x and y directions, it

is l>ossible Io maintail_ the same work h)a{l per processor as l})e mmJ]>er of processors is increased.

Ill figure 7.10 a l)lol of the wall-clock execution tilne versus the number of parallel COlllpule

nodes is shown. The legend in the figure shows the MESA scheme used and ils maxmmnl error

in pressure across all grid points. The tame of mmwrical data used t,o create figure 7.1{} may be

found in section A.2.

This test was designed so that the wall-clock time s/Jouhl not change as tile number of pro-

cessors used is increased. Notice. howew_r. 1,hat lhe lower order schemes are nol as scalable as

the higher order s{'hen] 's as the number of l)rocessors increases. In particular, using more than

64 processors can resull in ral)idIy decreasing scalal)ility. This is likely due Io the uelwork's

illlerconnecl archileclure on the 5(41 system being Ol)timized for groul)s of 64 (the tyl)ical max-

imum size of ORI(4IN 2000 systems). The 256 processor ORI(ilN syslem from which these

results were obtained is. in facl, the only one of its kind in the world al this l,in|e all([therefore

its hll,ercolllleCt is likely nol opl, H/lized for 2.56 processors. Nonetheless, the scaling l)erformance

quickly in]proves as higher order M F,SA s('hemes are used.

Next, the grid resolution is doubled and the same set of MESA algorithlns are lested. As

shown in figure 7.11 the same t,rell(ls observed in figure T.l{} Call])e SPell, bll{, they are less

l}ronounced. AIM hi figure 7.12 where there are 32 grid points per unit interval, ew'n l,he

c:eo8 scheme shows good scalability. These graphs suggesl good scalabilily is achieved 1}y using

higher order schemes and/or using increased grid resolution. Increasing lhe grid r(,s(}lution or

increasing the stencil {leplh have the effect of increasing the amoum of imerior work lhal a

NASA/TM--1999-209182

176

_2 5
-rH "

2
_d
0
_J

0

_1.5

0

1

Time VS. Node Count

.2 J .2 .2 ,2.2

0 2.5 5 7.5 i0 12.5 15

Square root of node count

Alg. Error

-_i c2dl -i

.2 c2d3 -7

c2d5 -12

A4 c2d7 -12

5 c2d9 -ii

Figure 7.10: Scalabilily Perfornlance 1o lime=10, with convection Mx=My=l. iun=8

node may do before information must he communical,ed between nodes. However, increasing

the grid resolution is less etJicienl on a single node than using a higher order MESA schenm as

sections 7.1.1 and 7.2.1 have shown. Therefore, for besL results, Olle shouhl use the higher order

MESA schemes to achieve not only high resolution, bul single node efficiency and parallel node

scalability.

NASAJTM-- 1999-209182

177

m3.5

-,-I
-0

3

.l.J
o

l-J
2.5

(D

u_
o 2

1.5

Time VS. Node Count

• • • - • • • _ e- • --o --e -e

8..2.2.2,2.2 .2.2.2g ,22,2,2 ,2

1]

1 1

2.5 5 7.5 i0 12.5 15
Square root of node count

Alg. Error

-_ic2dl -2

c2d3 -9

_c2d5 -12

_-c2d7 -12

5 c2d9 -11

Figure 7.11: Scalability Performance 1o tilne=lO, with conveclion Mx=My=l, iun= 16

3.4

0

_3 2

3

O

2.8
o

o_2.6
,-7

2.4

Time VS. Node Count

-_._ _ _

, ,01, 1 .1
0 2.5 5 7.5 10 12'.'5' 1'5 '

Square root of node count

Alg. Error

--_l-c2dl -3

c2d3 -ii

Figure 7.12: ScalaBility t)erformallce Io time=l(), with convection Mx=My=l, iml=32

NASA/TM-- 1999-209182

Chapter 8

Conclusions and Future Research

8.1 Smnmary

A new approach for solving computational aeroacoustics pl'oblems has been dewqoped that

eliminates tile labor imensiw, tasks of grid genera|ion, algorithm creal ion, code development

and debugging commonly associaled with these types of probh,nJs. This approach uses a higher-

h'vd language, Matlwmalica, Io create a faster, lower level iml_lementation in FOt{TRAN. Our

m'w automated approach has the capacity to design sophisticated FORTRAN codes which are

necessary t()r using lhe MESA schemes to solve acoustical problems with complex bodies on large-

scale paralh'l computer systelHS. The MESA .qCll(_lll¢,S [:'_4], [35], [3(i] provide the basic numerical

foundation, in lhis work, for solving the COmlmtationally demanding acoustics i)robh,n_s since

they can bc designed in an aulomaled mamwr with arlfit.rarily high accuracy and resolution in

space aml time.

8.1.1 Scientific Developments in the Thesis

The following lechnical results were accomplished in tiffs work:

* Automatic construction of the MESA methods in Mathematica as discussed in chal)ter

3. Both the spatial interpolation and tiutw advanwemezll processes of lh,' MESA method

w¢'r,, automati('alh crvat_'d fi)r both two and thr('(' Sl,atiaI dituvnsions and wet. validated

NASA/TM-- 199%209182 178

179

bycomparingthemwiththeexactsolution.

• AtnomaticgenerationoftheFORTRANcodenecessarytoefficientlyusetheMESAmeth-

odsasdiscussedin chal)ter3. All t.hree algebraically equivalent forms (Finite I)ifference,

SpatiM-'Femporal, and Recursive Tensor) of the MESA methods were automatically writ-

ten into a FORTRAN code. Tile FORTRAN code was validated by comparing its results

with earlier hand-written codes and by checking them with the exact analytical solution

available in the test problenls.

• Developed a lnethod for the reduction of all possible stencil configurations to a small set

thai could be efficiently mapped.

* Amomatic mapping of all the near boundary grid points to the wall boulldary in a way that

insures local spatial interpolants can be generated near the wails as discussed ill chapter

4. The locally defined spatial interpolants were then evaluated t,o solve for the values of

the near boundary grid poims. This mapping will work for any order ltermitian MESA

scheme using a 2 x 2 siaggered stencil.

• Automatic stencil selection to produce numerically stahle 2 '"t order wall boundary treat-

menls as discussed in chapter 5. The near boundary grid points must be evaluated in a

particular sequence that minimizes lhe use of wall boum[ary information and maximizes

the overlap of the domain of dependence of the spatial interpolants.

• Automatic parallelization of the FORTRAN code using MPI as discussed in chapter 6.

All domain decomposition, FORTRAN code generation, aim message passing logic were

accomplished without human assistance on a hi-periodic open domain IWOl)h'm.

8.1.2 Applications of the Scientific Developments

The following numerical experiments were completed in this thesis using the code generation

tools:

• The two dimensional hi-periodic open domain wave propagation problem, which proviously

had been solved using only a 5 th order accm'aw MESA scheme [3.'1]. has now been solved

using up to 2.()t/' order accurate MESA methods.

NASA/TM-- 1999-209182

180

* The MESA schenw was extended t.o three spatial dimensions and tile tri-periodic open

¢lomain wave propagation proHem was solved using from 2 ''d to 29 °' order MESA scllemes.

• A unit square was embedded in a Cartesian mesh and the wave propagation on the interior

of the square was simulated. It was possible to use from 2 ''d to 11 °* order accurate MESA

schemes when the box was unrotated and aligned with the (!artesian grid.

* The same unit square was rotated about its center and only the '2 ''_t order reel.hod was

numerically stable. Also, a unit circle was embedded in a (?art.esian mesh and the wave

propagation in its interior was simulated. As occurred with the rotal.ed square Lest pro])-

h'm, only the 2 ''J order MESA nwlhod was numerically stable.

• The hi-periodic open domain waw, propagation problem was solved in parallel using up

t.o _256 processors and using the 3 '''t through 23 ''d order accuracy MESA schenJes. As

expected, excellent parallel scalability was observed.

8.2 Conclusions

One signilicanl advantage of the MF,_qA schemes on ('artesian meshes is thoir slencils may

I)e kept to a slnall _ x _ or 2 × 2 × 2 R>ol-print. These s,nall stencils, when used with ifigh

accuracy |[ermitian MESA schemes lnay have a siguiticam role lo play in solving linear tirsl-

or&,r hyerbolic systems of equations wilh irregular wall boundari_s because of lhe following

advaut.ages. They:

• require less memory to achi_we a particular error toleranc_ _,

• are more efficient at achieving a particular error tolerance.

• obtain bet.t.er resolution (up to 2 wavelengths per grid point wit.h 2!1 t/' order method),

• maximize parallel etficiency (nearly perDct scalability),

• are most efficient when using the Recursive Tensor form,

* are easier 1o cod,' ht lhe Recursiw' Teusor form (lhe code reduces t.o a few lines),

• can exceed lhe accuracy of l oday's COllll',ltlor floating poinl hardware..

NASA/TM-- 1999-209182

181

• maintains high accuracy for long time periods (ideal for time dependent problenls),

• can be used to interpolate near boundary grid points without violating (TL condition.

• can achieve any level of accnracy in space and t iine,

• can be flflly automated.

In short, the excel:)tional strengths of the Hermitian MESA schemes and tile automatic code

generation tools in this dissertation provide a productive framework froln which to develop tile

more sophisticated FORTRAN codes required in the future to develop a turnkey approach to

solving first-order linear hyperbolic partial differential equations in complex domains on large-

scale paralM conaputers.

8.3 Future Work

The Hermitian boundary treat lnents (3 "d order or higher) are no! numerically stahle at this

time for generalized, irregular wall boundaries. _I:he issue is related to the ditt3culty of Birkhoff

illterl)olation that must be clone at each stencil [73]. It is in fact. a current topic of research in

the nmt, hematical research community dealing with a,pl)roximatioll theory. But l,here is reason

t,o believe this approach will be successful since t,hc unrotated box case worked and because the

MESA scheme itself uses the same spatial interpolation scheme which is clearly successflll.

Once a stable spatial interpolation process is found in lwo-dimensious, this will be extended

t,o three-dhnensions, Also, work is currently underway to extend lhe MESA schemes t,o variable

coetticienl and nonlinear systems. Their complexities will be minimized by using the same

code generation approach previously discussed. Preliminary resuh,s suggest the high resolution

ltermitian MESA schemes may 1)e ideally suited to solve the viscous nonlinear Navier-gtok('s

equat ions.

With lhose tasks completed, it will then he l)Ossil)le to simulate the acoustics in a ducled

airfoil cascade or to examine the effects of nozzle geometry on jet noise generation in (let all.

NASA/TM-- 1999-209182

Appendix A

Data from Numerical

Experiments

This appendix provides the actual numerical results obtained from tile many FORTRAN codes

generated with the automalion tools developed ill this work. This data was collecled fl'om S(;I

systems with R 10000 (Iptr's.

The first se('lion shows the al_solute error and energy ratios for an unrotated box at various

times. This data is plotted at time, t = 10, ill figure 7.5. The resulls are as expected and

demonstrate lhe wall boundary treatment is al the same order of accuracy as the interior ME,qA

Scllellle.

The second section shows lhe wall-clock execution time of the various MESA schemes with

lmrallel extensions. This information is presented in graphical form in figures 7.10, 7.11. and 7.12.

The results demonstrale the parallel scalability of the MESA algorithms up to 2:']6 processors.

A.1 Unrotated Box Numerical Data

In this section, the Hermitian schemes on 2 × 2 stencils are applied to tile unrotated box prol>lem

as discussed in section 7.1.-1. All results are presented in the following tables for up to 11 rl, order

accuracy. The tirst cohunn shows the nondimensionalized tin|e at which the data is gathe|'ed.

The secoml column shows the nunlber of grid points per half a waveleng!h, illll. The third

NASA/TM--1999-209182 182

183

time iun error energy
1 2 3.03409D-01 8.44204D-01

1 4 2.68635D-01 5.61817D-01

1 8 4.46000D-02 1.02293D+00

1 16 2.72473 D-03 1.05281 D+00

10 2 1.32696D+00 1.62567 D+00
10 4 9.24036D-01 6.49811D-04

10 8 ,t.39834D-01 3.40264D-(11

10 16 4.15104D-02 9.27166D-01

10 32 2.99916I)-03 9.99615I)-01

10 64 2.28536I)-04 1.00247D+00

100 2 4.25006D-01 1.62567D+00
100 4 2.41269D-01 5.90033D-05

100 8 2.47026D-01 1.35196D-05

100 16 1.26843D-01 ,1.39830D-()1

100 32 .().22886D-03 9.6676:/D-(_I

100 64 6.31680I)-04 1.01000I)+00

1000 2 1.20825I)+00 1.625671)+00
1000 4 7.865381)-01 5.90033D-05

1000 8 7.83253D-01 2.[11734 D- 10

1000 16 7.80100D-01 7._0100D-01

1000 32 2.21091 I)-01 5.35774D-01

Table A.I: Maxmmm Error in p at. t.=l, 10, 100, 1000, c2ol scheme applied lo unrotaled box

column shows the maximum al)solule error of the pressure a! all grid points ill the computational

donlain The fourth cohlnnl shows tile energy ralio, "e_" e,_erq*j _I']le energy is computed as tile
• _ old _n_rgy "

sum of 1/-' + _l'-'+ v'-' at each grid point. The energy ratio should I)e 1 for all time in this i)rol)h'm.

NASA/TM-- 1999-209182

184

time iun
1 2 4.47733D-01
1 4 4.05765D-02
1 8 1.01121D-03
t 16 1.50919D-05
1 32 2.44167D-07
1 64 4.56731D-{}9
10 2 1.05676D+(}{}
10 4 4.80494D-01
10 8 1.29059D-02

10 16 2.17390D-04
10 32 3.54538D-06

10 (54 5.71791D-08

100 :2 1.54806D-01
100 4 2.43598D-0 l

100 8 5.72942D-0;_

100 16 7.85736D-04

100 32 1.07485D-05

100 64 1.55296D-07

1000 2 9.38053D-01

1000 ,1 7._3264l)-01

1000 8 (i.392601)-01

1000 16 1.998,q3D-03

10(10 32 2.99578D-0,1

error energy

2.09415D+00

1.19465D+00

1.12995D+00
1.06189D+00

1.02997D+00

1.01475D+00

2.15754D-01

3.67935D-0t

i).998431)-01

1.01197D+00

1.00601D+O0

1.002,")6D+00

2.156851)-01

1.50925D-05

8.67869D-01

1.05779D+00

1.030;_5D+00

1.01492D+00

2.15685D-01

1.619261)-09
7.42284D-02

1.0218-ID+00

1.01172D+00

Fable A.2: Maxinnnn Error in p at t=l, 10, 100, 1000. c2o2 scheme applied to unrotaled box

NASA/TM-- 1999-209182

185

time iun
1 2 1.20832D-01
1 4 2.10650D-03
1 8 1.08417D-05
1 16 4.21449D-08
1 32 1.85714D-11)
I0 2 9.81406D-01
10 4 3.22779D-02
10 8 1.51347D-04
10 16 6.250171)-07
10 32 2.51818I)-0.(t
10 64 1.17827D-11
lO0 2 2.40033D-01
100 4 1.50927D-01
I00 8 6.41682D-04
100 16 2.01422D-06
100 32 7.06803D-09
100 64 2.59322I)-10
1000 2 7.87774D-01
1000 4 7.95076D-01
1000 8 1.43518D-02
1000 16 5.55534D-05

error energy
1.57199D+00
1.30329D+00
1.13270D+00
1.06194D+00
1.02997D+00
1.53836D-02
1.00034D+00
1.026311)+00
1.012431)+0()
1.00602D+00
1.00296D+00
1.84507D-04
7.D12t14D-()I
1.13(160D+00
1.062(iGD+00
1.030:_3D+00
1.01492I)+0()
1._45(18D-0,t
2.21515D-03
1.021381)+00
1.02563D+00

TableA.3:MaxinmmErrorin I) at t=l. 10,100,1000.c2o3sch(,meappliedto unrotatedbox

tinw iun
1 2
l 4
1 8
1 16
10 2
10 4
10 8
10 16
100 2
100 4
100 8
100 16
1000 2
I0(}(} 4
1000
1000 16

error

1.57873D-0:2

6.45749D-05

7.33.()731)-0_

6.573:_M)- 11

4.01532D-0 I
9.69482D-04

1.0,1489D-06

9.82510D-10

2.47273D-01

4.84359I)-(}:{

,1.05413D-06

2.32924I)-09

7.833021)-01

8.84857D-02

.t).96391 D-05

8.()::i4571)-()8

energy
1.86086D+00

1.3(}.%0D+00

1.13273D+00

1.06194D+00

6.38565D-01

1.0G016I)+00

1.026(i4D+00

1.012431)+00
3.83a461)-04

1.288041)+00

1. 134291)+00

1.062681)+00
2.748i)81)-08

!).'}2,()111)4) 1

1,054.()71)+00

1.02577D+00

'l'al)h' AA: Maxinmm Error iu i) at t=l, I0, I00, I000, c2o4 schenle apl)li('d to unrota)('d box

NASA/TM--1999-209182

186

time iun
i 2
1 4
10 2
10 4
100 2
100 4
1000 :2
1000 ,1

error energy
1.24296D-03 1.92272D+00

1.21727D-06 1.30970D+00

4.19537D-02 1.11358D+00

1.85616i)-05 1.06212D+00

2.12150D-01 9.04443D-01

8.31232D-05 1.31289D+00

8.{11028D-01 4,62971D-0J1

1.76770D-03 1.12454D+{}{}

Table A.5: Maximum I'h'ror in 1) at t=l. 1{}, 1(}0, 1(){)0. c2o5 s{-hol]W applied to unrolalP(l box

NASA/TM--1999-209182

A.2 Parallel Scalability Study Data

In this section, the numerical results of the two-dimensional MESA schemes applied to the hi-

periodic open domain problem (discussed in section 7.3) are shown. The firsl column is the size

of the stencil ill one-dimension. The second column represents the number of x-derivative data

elements per grid point (a MESA c2o5 scheme has size=2 and depth=5). The third column

represents the nmnber of grid points per a half-wavelength. The fourth cohnnn represents the

number of parallel processing nodes in one-dimension of the mesh (t his value squared is the tot al

number of processors used). Tile fifth column represents tile nmximuln error in the pressure

across all grid points on all nodes. The sixth cohmm represents the change in ellergy ratio

and should be ol_e. The last colmnn shows the elapsed wall-time to run the simulalion to a

non-dimensional time, t=10. Ideally, the wall-time should not change as more processors are

used since the problem size is prol)ortionately increased as discussed in seclion 7.3.

The data ['or this seci, ion was obtained oil the :256 processor ORI(;IN 2000 SGI sysl,eln at

the Numerical Aerodynamic Facility at, NASA Ames.

NASA/TM-- 1999-209182

188

size
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

depth iun V'nodcs

1 8 1 3.23784D-02

1 8 2 3.23784D-02

1 8 3 3.23784I)-02

1 8 4 3.23784D-02

1 8 5 3.23784D-02

1 8 6 3.23784D-02

1 8 7 3.23784D-02

1 8 8 3.237841)-02

1 8 9 3.23784D-02

1 8 10 3.23784D-02
1 8 11 3.23784I)-02

1 8 12 3.23784D-02

1 8 13 3.23784D-02

1 8 14 3.23784D-02

1 8 15 3.2378,1D-02

1 8 16 3.23784D-02

3 8 1 1.62772D-08

3 8 2 1.62772D-08

3 8 3 1.62772D-08

3 8 4 1.62772D-08

3 8 5 1.62772D-08

3 8 6 1.62772D-08

3 8 7 1.62772D-08

3 8 _ 1.62772D-08

3 8 .9 1.62772D-08
3 8 10 1.62772D-08

3 8 11 1.62772D-08

3 8 13 1.62772D-08

3 8 13 1.62772D-08

3 8 14 1.62772D-08

3 8 15 1.62772D-08

3 8 16 1.62772D-[J8

5 8 1 2..q3876I)- 13

5 8 2 2.93210D-13

5 8 3 2.978731)-13

5 8 4 3.009261)- 13
5 8 5 2.98428D-13

5 8 6 2.9820GI)- 13

5 8 7 3.02092D-13

5 8 8 :L(}2924D- 1:_

5 8 9 3.0{}093D- 13

5 8 10 2.997(}51)- 13

5 8 11 2.!)8.{)83D- 13

5 8 12 3.(30926D- 13

5 8 13 3.{}0537I)- 13

5 8 14 :L(}5034 I)- 1:_

5 8 15 3.(}19251)- l:i

5 _< 16 ;i.01092D- 13

error energy
9.28744D-0

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01
9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

9.28744D-01

{).287441)-01

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D-I-00

1.00000D+00

1.00000D+00

1.00000D+00
1.00O00D+00

1.00{}(}0D+00

I.(}0000D+OO

1.00000D+00

1.00000D+00

I.(}0000D+0(}

1.00000D+00

9.i)9923I)-01
9.9{).{)91D-01

9.99986D-()1

1.00{}(}2I)+(){)
1.00002D+00

1.0O{}03D+00

1.00002I)+00

1.00001D+00

1.000021)+00

1.00002l)+00

1.00002D+00

1 .O(}001I)+00

1.00(}{}21)+00

1.00{}{}21)+{}(}
1.00001 D+00

1.0{}0(}2I)+0(}

wall time {seconds)
5.23717 t 999993734

5.175763199978974

5.357913600048050

5.382107199984603

5.844769600(}22119

6.238386400043964

8.475409599952400

l 1.172030400019t4

33.48435039998731

54.62071909996807

62.,15402240008116

93.1077320000622-1

82.79243520007003

111.3681471999967

%. 5708072(}00416(}
129.0867583999643

46. 7005239i)998531

,17.327i)471 {)9i)84.{)2
47. 32866720001912

47.01437280001119

47.679668000(}2614

48.903(}7600{}04598

47.6343775_).t)92667

49.(17068880001316

55.7806255.{).996033

72.05107759998(i46
89.01010640000459

121.7879{136000(}.{)9

87.26017040002625

153.9531184000662

90.48256879998371

145.8453919.q993(} 1

178.4549544{}00183

179.566674400{}{}4(i

179.7554208000074

178.9752455.(.)!)9842

18:1.900596800{}274

179.8433.")8400000:)

180. 1372600001050
181.738_32(}900027

18.(.).75{5899999{)785

l i)9.60.(}.9071 .(}i),(,)779

184.5738287999i).'-)3

201.6447256000247

223.626{}383.()999{}6

265..96 l,1831999643

203. 88395839.{)!).(),t:_

269.(}66947999!}924

Tal)h, A.6: .q{'alal>ility of Even St('n('il_'d 21) Algorilhms, c2{>1 - c2o5, iun=8

NASA/TM-- 1999-209182

189

size
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
.)

2

depth iun _ error

, 8 l 3.58326D-13
7 8 2 3.46390D-13

7 8 3 3.82083D-13
7 8 4 3.87190I)-13

7 8 5 4.18332D-la
7 8 6 3.94906D- 13

7 8 7 4.23217D-13

7 8 8 4.15556D-13

7 8 9 4.46976D-13

7 8 10 4.24549D-13
7 8 11 4.15334D-13

7 8 12 4.13669D-13

T 8 13 4.13225D-13

7 8 14 4.07674D-13

7 8 15 4.13336D-13

7 8 16 4.32709D-13

9 8 1 1.19427D-12

9 8 2 1.36260D-12

9 8 3 1,69453D-12

9 8 4 1.69622D- 12

9 8 5 1.73284D-12

9 8 6 1.93617D-12

9 8 7 1.79218D-12

9 8 8 1.94411D-12

9 8 9 ;2.00640D-12
9 8 10 1.84930D-12

9 8 11 2.06579D-12

9 8 12 1.90981D-12

9 8 13 2.01039D-12

!} 8 14 2. l{}(j(iSD- 12
9 8 15 1.98609D-12

9 8 16 2.18581D-12

energy
1.328621)+11

1.14766D+11

1.13697D+11

l. 13002I)+ l 1

1.10189I)+11

1.15987I)+11

1.14410I)+11

1.13454[)+11

1.18064D+11

1.13996D+ 11

1.15191D+11

1.17615D+11
1.15788I)+11

1.142{}5D+ 11

1.144731)+11

1.13963D+11

2.31219I)+28

2.41473D+28

2.504681)+28
2.29146I)+28

2.35828D+28

2.33522D+28

2.29523D+28

2.345381)+28

2.37756D+28

2.33301 D+28
2.33{}85I)+28

2.3{}2031)+28

2.36807D+28

2.33284D+28

2.35590D+28

2.35883D+28

wall time (seconds)
448.1842528000125

450.6390879999963

457.2950864000013

451.2861640000483

456.0095087999944

453.2048775999574
455.4335280000232

454.322438400(}05.q
458.1 .q679680{}(}(}9.{}

47:1.2712151999585

460.66208"23(.){.){.)401

505.562-168799,(}.(}53

491.8861192(}00331

472.0532631999813

476.72353,q20{l(12.q3

52(},72(.175(}4(}0(}599

897.21219839.{}996.q

•q04.578q711999823

9{}8.1265935999691

911.9188191999565

907.4723824000102

91 l. 1470751999877

910.9387560000177

907.4883976000128
927.2804231999908

928.222:{328(){)040()

92.1.255726399947. (}

928.1126103,q9,()559

927.6433960000286

948.021363200(}:177
951.3130775999743

976.0686616000021

Table A.7: Scalability of Even Slenciled 2I) Algorithms, c2o7 - c2o9, iun=8

NASA/TM-- 1999-209182

190

size
4
4
4
4
4
t
4
4
4
.1
4
4
4
-1
-|

-I

4

4

4

-t

4

'1

4

-1

4

del)th iun

0 8, 1 2.38981D-01
0 8 2 2.38981D-01

0 8 4 2.389SlD-01

0 8 8 2.38981D-01

0 8 16 2.38981D-01

1 8 1 2.37891D-06

1 8 2 2.37891D-06
1 8 4 2.37891D-06

1 8 8 2.37891D-06

1 8 16 2.378911)-06

2 _ 1 1.47837D-12

2 8 2 1.47915D-12

2 8 4 1.48059D-12

2 8 8 1.48004D-12

2 8 16 1.48348D-12

3 8 1 2.86993D-13

3 8 2 2.89213D-13

3 8 4 2.90,13,1 D- 13

3 b 8 2.91878D-13

3 8 16 2.93321D-13

4 8 1 3.00093D-13

4 8 2 2.9(ff63D-13

4 8 4 3.02203D- 13

-1 8 8 3.03-124D- 13

-1 8 16 3.06255D- 1:_

,,/n ode s error energy

5.43310D-01

5.43310D-01

5.43310D-01

5.43310D-01

5.43310D-01

9.99995D-01

9.99995D-01

9,99995D-01

9.99995D-01
9.99995D-01

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

i .00()00D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00
1.00000D+00

wall time (seconds)
6. 056104799965397

6.0%022400026210

6.619275200006086

14.98058799997671

127.1477040000027

51.41944319999311

51.6467631 q9i)9853

52.10597440000856

54.93095439998433

139.84889519i).()461

175.6608000000124

176. 3666416000342

176.29240560001 g)3

176.504405600(/165

217.2921216(100104

424.86659G7999841

424.2507880(}00048

428.3[<)908799965,()

425.89611919q9842

460. 5442184000276

867.3569967999938

863.3986783999717

8(}7.570908800000:_

87(}. 219G 703,()!).()653

887.8940992000280

Table A.8: Scalability of Evon Slenciled 21) Algorithms, c4o0 - c4o4. iun=b

NASA/TM--1999-209182

191

SiZ{ _

3
3

3

3

3

7
7

7

7

7

11

11

11

11

11

15

15

15

15

15

depth iun _Ds error

0 8 1 3.,12487D-01
0 8 2 3.42487D-01

0 8 4 3.42487D-01

0 8 8 3.42487I)-01

0 8 16 3.42,187D-01

0 8 1 3.09,{)09D-{}4
{} 8 2 3.09909D-04

0 8 ,1 3.09909D-{}4

0 8 8 3.09909D-04

0 8 16 3.{}9909D-04

0 8 1 3.4294{}D-07
{} 8 2 :IA2940D-07

0 8 4 :3.,:12,()4{)D-{}7

0 8 8 3.42940D-07

0 8 16 3.429,10D-{}7

(} 8 1 4.1686.qD- 10

0 8 2 4.1G870D-10

0 8 4 4.16870D- 10

{) 8 8 4.16871D-I0
() ' _ 16 t.16872D-1{}

energy
7.68253D-01
7.68253D-01

7.68253D-01

7.68253D-01

7.68253I)-01

9.99738D-01

9.99738D-01

9.99738I)-01

9.99738I)-01

9,9,q738D-0]

1 .{}0{)00I)+00

1.00(}00D+0(}

1.00000D+00

1.00000I)+(}0
1.(}0000I)+{}{}

1.00000D+{}0

1.0(}00(}I)+00
1 .(J0{}{}{}D+00

1.00000D+00

1 .{)0000D+0{)

wall time (seconds)
1.087568799965084

1.1592911999!){}548

1.27636880002683(}

18.02085120008,{)03

107.3357264000224

16.7,9473039996810

15.83481199998641

15.913,{)5760001615

17.388,1312000(}{}.q2

106.7015184001066

62.6171192000038{)

62.68(}50879996736

62.9233807!)99989(,)

63.6!)(i6807.{)9,q 9.()74

109.4004799{,)!),q52. ()

160.06929760{}0137

160.031092000(} 193

160.2175512000103

160.7702752000187

190.8228232000256

Table A.9: Scalability of Odd Stenciled 2I) Algorithms, c3o0 - c15o0, iun=8

NASA/TM-- 1999-209182

192

size depth iun v/nodes
2 1 16 1 4.1bt0.D-03"9 "
2 1 16 2 4.18709D-03
2 1 16 3 4.18709D-03
2 1 16 4 4.18709D-03
2 1 16 5 4.18709D-03
2 1 16 6 4.18709D-03
2 1 16 7 4.18709D-03
2 1 16 8 4.18709D-03
2 1 16 9 4.18709D-03
2 1 16 10 4.18709D-03
2 1 16 11 4.18709D-03
2 1 16 12 4.18709D-03
2 1 1(5 13 4,18709D-03
2 1 16 14 4.18709D-03
2 1 16 15 4.18709D-03
2 1 16 16 ,I.18709D-03

2 3 16 1 1.2777qD-10

2 3 16 2 1.27780D-10

2 3 16 3 1.27781D-l(J

2 3 16 4 1.27783D-10

2 ;I 1(5 5 1.27781D-10

2 3 16 6 1.27782D-10
2 3 16 7 1.27781D-10

2 3 16 8 1.27782D-10

2 3 16 9 1.27782D-10

2 3 1G 10 1.27783D-10

2 3 16 11 1.27783D-10

"2 a 16 12 1.27783D- l (1

2 3 16 13 1.27783D-10

2 3 16 14 1.27784D-10
2 3 16 15 1.27783D-10

2 3 16 16 1.2778415-10

2 5 16 1 1.45328D-13
"2 5 16 2 1.49769D- 13

2 5 16 3 1.51879D-13
2 5 16 4 1.52212D-13

2 5 16 5 1.55653I)-13

'2 5 16 6 1.5509815-1:_

2 5 16 7 1.577(53D-13

2 5 16 8 1.55320D-13

"2 5 1G 9 1.5487615-1:/

2 5 16 10 1.58318D-13

2 5 16 11 1.5(1541 D- 1::)

2 5 IG 13 1.5676315-1:1

"2 5 lfi 13 1.5(i,130D- 13

2 5 16 14 1.5731.9I)-13

"2 5 1(5 15 1.602051)- 13

2 5 16 16 1.6120-1I)- l:_

error energy wall t,ime (seconds)
9.90684D-01

9.q0684D-01

9.90684D-01

9.90684D-01

9.90684D-01

9.90684D-01

9.90684D-01

9.90684D-01

.q.90684D-01

9.90684D-01

9.90684D-01

q.90684D-01

i).90684D-01

9.90684D-01

9.9068415-01

9.90684D-01

1.00000D+00

1.()00()(}I)+00

1.00000D+00

1.00000D+00

1.00000D+00
1.00000I)+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00G00D+00

1.00000D+00
1.00000D+00

1.00000D+00

2.11148I)+01
2.0056515+01

2.03366D+01
2.01497D+01

2.02570I)+01

1.9905:_ D+01

2.02560I)+01

2.01438D+01

2.01459I)+01

2.02173 D+01

2.00:t56D+01

2.00856D+01
2.000:IGD+(}I

2.002601)+01

1..092251)+01

2.00:_25D+01

33.34540320001543

36. 38025839999318

37.38562880002428

36.434111200(14021

34.13949199998751

36.0164392000297 l

40.33804960001726

51.605365599,(57136

8;3.108556799,(53983

83.77599599992391
6 l. 15366560000257

111.7266711999982

108.257455999,q994

146.20.(}578399997(i

110.1791632000022

158.8355488000088

315.83751280000,13

316.87054799.()9771

321.0610504000215

319.10827359.(),(5953

320.6734375,()9.()07(i

319.5226640000474

323,55348959.q,(15,()0

330.3301328000380

330.6389639.(19.(5252
326.8845864000032

348.6G 75,(520000135

395.7727319.(}.q.q!) 7G

3:_6.94180800(50032

34 G.801 (i9519,q 9962

350..()(i234800000() i)
,'128.85252640(}(}054

1228.1215231!)(5952

1230.585302400053

1235.663951199,()67
1233.6718223!)994, ()

1237.722901600064

12t2.-135900800047

12-19.0135,1(i4(}0005

1259.287554400042

126(3.82_,():I04(}007, ()

1275.8367. ()I 1.0.(5981

1288.18755!)200000

1284.7,()30.(5760000(;

1281 .,_)03(i00799.q.(57

129,1.2(i_6,()0,100000
1312.5038176000(}2

1317.5:_46207!)!).()!)7

Tal)le A.10: Scalability of Even Nt('n('ih'd 21) Algorilhms. c2ol - ('2o5, iun=l(i

NASA/TM-- 1999-209182

193

size depth iun

2 7 16 i 2.74475D-13

2 7 16 2 2.96874D-13

2 7 16 3 3.33733D-13

:2 7 16 4 3.43892D-13

2 7 16 7) 3A2393D-13

2 7 16 6 3.84248D-13

2 7 16 7 3.86136D-13

2 7 16 8 3.(i2266D- 13

2 7 16 9 3.55160D-13

2 7 16 10 3.37785D-13

2 7 16 11 3.78475D- 13

2 7 16 15 3.72147D-13

2 7 16 13 3.52107D-13

:2 7 16 14 3.57603D- 13

2 7 16 15 3.60489D-13

2 7 16 16 3.7059:2D-13

:2 9 16 I 2.27607D-12

2 9 16 2 2.81408D-12

:2 9 16 3 2.33982D-12

2 9 16 4 2.44680D- 12

2 9 16 5 2.743311)-12

2 9 16 6 2.57855D-12

2 9 16 7 2.53278D-12

2 9 16 8 2.54285D- 12

2 9 16 9 2.66986D-12

2 9 1 (i 10 2.(i,i 755 I)- 12

2 9 16 11 2.553:29D- 12

2 9 16 12 2.98259D- 12

2 9 16 13 2.69806D-12

2 .9 16 1,4 2.76029D- 12

2 9 16 15 6.88456D-0_

2 9 16 16 2.69351D-12

error energy wall linle (seconds)

2.81362D+19

2.82098D+ 19

2.q1273D+19

2.83502I) + 19

2.91375D+19

2.83731I)+1q

2.85317I)+1.0

:2.811571)+ 19

2.81470D+ 1,9

2.8288,7)1)+ 19

2.86809I)+ l i)

2.83225I)+ 1,q

2.85238D+ 1,q

:2.84159D+1. ()

2.85847[)+ 1i)

2.82556D+19

1.,t5926D+39

1.44775I)+3,q

1.43026 D+ 3.(1

1.47093D+39

1 .,t2()69D+39

1.43481 D+3{)

1A-I191D+39

1.46191 D+39

1.41666D+39

1.42460D+3.q

1.4:2340D+3.q

1.42804D+39

1.44301D+at)

1.44698D+3. ()

1.10447l)+,10

1.45205D+3.q

3085.163891999982

3{}87.64631:2800003

3124.434628799907

3103.314338400029

3115.1,qS(i4(i t0()()07

3115.0354584(/0031

3138.926576000056

3143.350,t 10399958

3156. :271051199q90

3162.65(}237600022

:;171._:}74_5a00001

3203.9776303999.q7

322q.511270399998

3222.951519199996

:32(37.425811199q95

3:284.77024719999,(t

(i 150.1 :}5244{)000{}5

6169.545q008(R) 102

6199.318338399986

(}:247.2475(i07,(1.q937

(i2.(12 .:{42919.()9.()96(i

6:234.5(}56_8800067

6272.7.()3180799927

6282.4113,(,)0399910

(i2,(13.4:21 (571:200078

6:290.0.1782239.(1996

6363.927(i98400003

6343.667015200001

643 l, 174068000000

63!)1,31830160(/004

6477.0_882800000(1

6448.539209600000

Table A.11: Scalability o[" Even Stenciled 2D Algorilhms, c2o7 - c2o9, itm=16

NASAFFM-- 199%209182

194

size depth iun v/nodes

3 0 16 1 1.01725D-01

3 0 16 2 1.01725D-01

3 0 16 4 1.01725D-01

3 0 16 8 1.01725D-01

3 0 16 16 1.01725D-01

7 0 16 1 5.42150D-06

7 0 16 2 5.42150D-06

7 0 16 4 5.42150D-06

7 0 16 8 5.42150D-06

7 0 16 16 5.42150D-06

11 0 16 1 3._4612D-10

t l 0 16 2 3.84615D-10

11 0 16 4 3.84615D-10

11 0 16 8 3._4616D-10
11 0 16 16 NA

15 0 1(3 1 3.42060D-13

15 0 16 2 3.45501D-13
15 0 16 4 3.46834D-13

15 0 16 _; 3.46279D-13

15 0 16 16 N A

error energy wall time (seconds)
9.66443I)-01
9.66443D-01

9.66443D-01

9.66443D-01

[1.66443D-01

9.99998D-01

!).99998D-01

[).99998D-01

9.99998D-01

9.99998D-01

1.00000D+O0

1.00000D+00

1.00000D+00
1.00000I)+00

NA

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

NA

6.877860000007786

6.9926575[)[)970698

7.15753679.()961235

36.73547040001722

134.7845471999608

111.2408288000152

111.910467,9999873

110.9043407999561

114.3528296000441

185. 8904215999646

461.6115871 .q9.()952.q

449. 7394943999825

44[).3641663999879

453.5119095999980
NA

1170.105012800047

1172.0900_3199961
1173.452475200000

1174.5il594640001. ()

NA

Tal)l¢_ A.12: Scalabiliiy of Odd Stenciled 2D Algorithms, c:lo0- c15o0, im,=16

NASA/TM-- 1999-209182

195

size depth iun _ error
4 0 16 1 3.47955t/-0;2
4 0 16 2 3.479551)-02
4 0 16 4 3.47955D-02

4 0 16 8 3.479551)-02

4 0 16 16 3.47955D-02

4 1 16 1 1.92644D-08

4 1 16 2 1.92644D-08

4 1 16 4 1.9264'1D-08

4 1 16 8 1.92644D-08

4 1 16 16 1.92644D-08

4 2 16 1 1.361)02D-13

4 2 16 ;2 1.37668D- 17,

4 ;2 16 4 1.3855(il)- 13

4 2 16 8 1.39222D-1:_

4 ;2 16 16 1,42886D-13

4 3 16 1 1.38003D-13

4 3 16 2 1.4{}998D-13

4 3 16 4 1.40665D- 1:/

4 3 16 8 1.4;299711-13

4 3 16 l(j 1.455501)-13

4 4 16 1 1.37779D-13

4 4 16 ;2 1.41220D-13

4 4 16 4 1.44662D-13

4 4 16 8 1.47771D-13

4 ,t 1{i 16 1.50380 D- 13

energy
9.24707D-01

9.24707I)-01

9.24707D-01

9.;24707D-01

9.247070-01

1.0(}000D+00

1.00{}(}0D+00

1.00{}00D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.000001)+00
1 .(}{}000D+00

1.000{}0D+00

1.00(}0(}I)+00
1.0000011+00

1.00000I)+{}(}

1.0(}000I)+{}{}

1.00{}00D+00

9.99999 D- 01

9.99996I)-03

9.99998D-01

1.0000011+0{}

1 .{.l{}000I)+{}0

wall time {seconds)
39.92755999.()98190

40.3(}595120001817

40.66720:199999758

57.0865(}400000624

151.7088871999877

350.7237432000111

35;2.1846247999929

353.2757240000064

354.4428503999952

438.21 (}6801)0{}{}183

1198. 147397599998

1;2{}0.047472000006

I 197.;294346400013

1201.052784800006

1239.151003199979

2975.240424000018

2904.4180"751999i)6

2909.78;2975999988

2932.{}32973600028

;2943. 797028800007

6()(}5.74991760001 ::_

6003.123391999980

5968.13989;2800013

5962.605800800025

6075.030088{}00000

Tal}le A.13: Scalahility of Even Stenciled 2D Algorithms. {'4o{1 - c4o4, iun=l{i

size depth iun
;2 1 3;2 1

2 1 3;2 2

2 1 3;2 4

;2 1 :];2 8

2 1 3;2 16

;2 3 32 1

;2 3 3;2 ;2

2 3 3;2 4
2 :I 32 8

;2 3 3;2 1B

x/l_od(s error energy wall time (seconds)
5.;297;280-04

5.297281)-(} I

5.;297;28D-04

5.2.(_7;281)-0,1
5.29728D-0,1

1.90603D- 1;2

1.90870It-12

1 ..q0947D-12
1.911250-1;2

1.91436D-1;2

9.98827D-01

9.98827D-01

9.98827D-01

9.98827D-01
.q..98827D-01

1.00000D+00

1.00000D+00

1.00000D+00

1.00000D+00

1.000(}1}D+00

;240.57;25144000025

241.3659{156000365

243. l {}(}45.{}1999808

5,12.7892.943 !},(L{}61-1
352.0861)415999778

2459.85238{i399987

2463.,1053247.q,q 9.qb

;2455.173{}50:L()9(.)b6
2520.319598400034

26;26,,1,1558239.()960

Tal)h, A. 14: .q('alahility of Ewm .qten{'iled 2D Alg()rilhms. (';2ol - ('2o3, iun=:12

NASA/TM--1999-209182

Appendix B

Mathematica Source Code For

Acoustics Problems With Wall

Boundaries

This appendix contains the entire Mat.henlatica code developed ill this dissertation ['or solv-

ing two-dimensional acoustical wave propagation prol)lenls (ha! include irregularly shaped wall

I)oundalies. To minimize the size of this doculllelll,, it does not contain tile code for l.hree-

dimensional wave l)rol)agation since it is a sinll)h- extension of the t.wo-dimensional case as

discussed ill chal>ter 3 and it. does no! contain the code for the parallelized version of Ill,> two-

dimensional hi-periodic open domain problem discussed ill chapter 6. In this al)l)en(lix, each

section contains a separat.e l\lathematica file for a total of five files. Each Mathelnatica file

('ontains multil)le nlodt,les that together perform a particular o])jective.

B.1 Code Generation System Overview

A tlowchart overview of the inputs, Mathemat, ica nlodules, FORTRAN subroutine, and the

Oml)Ut is shown in figure B.1. Once the inlmts are provided to the Malhenlatica nlodules.

they i)roduce all tile FORTRAN files necessary for solving tilt" linearized Euh'r equations on

a ('arl('sian mesh which co,,tains irregular I)oundari _s. The following sl,bsections will provide

NASA/TM-- 1999-209182 196

197

anoverviewof theinputparameters,Mathenmticamodules,FORTRANsubroutines,andtile

output.

B.I.1 Input Parameters

The input parameters are:

csize This parameter defines the size of the MESA stencil in one-dinwnsion.

degree This parameter defines the depth of data at, a grid point ill the MESA.

maxmeminbytes This paramet, er corresponds t,o the maxinmm amom_t of memory available

oll a cOlllptlt,er syst, etll alld is used to limit the grid resolut, io, to prevent core dumps.

maxiuntop This parameter is tile nlaximum number of grid points per unit inlerval that will

be used in the grid resolution studies.

minim, This paranleter is t.he minimum number of grid poiiHs per unit int.erva] that will b<'

used ill the grid resolution studies.

lnaxthne This parameter is the maximum time that the acoustical simulation will be run to

during the grid resolution studies.

&

readgrid This parameter is a ftag used for reading a grid definition file. The grid dofinition

file is generaled in FORTRAN for l:)t'ol>lems with many grid points. The file provides the

labelling for all grid points on the Cartesian mesh. FORTRAN is faster than Mathematica

on problems with simple geometry such as squares and circh's. A more rebus! labelling

algorithm may be written in C that could handle general geometries.

theta This parameter defines the angle of rotation about the center of the box relaliw' to the

fix (!artesian mesh.

listofcurves This variable is defined within tile ma2d code but is also an inlmt 1o this code.

[! defines the list. of parametric curves thai rer, reselll the geolnetry of the walls. In tile

fi,ture, this variable will be defined by a CAI) definition file.

NASA/TM--1999-209182

198

INPUTS

CBIZ@ maxmeminbyt e s
maxiuntop maxtime readgrid

degree listofcurves miniun theta

MATHEMATICA

tf2d .tfelp ce2d.tfelp sued

J
t ensorr_utineup, f

I FORTRAN If

_nitcond. f

ma 2d

fillarrays
time advanc eup. f

tensorroutinedown, f timeadvancedown, f

OUTPUTS

common.h

fillfillsdown.f

fillfillsup.f

definephysicalxy.f

determinefills.f

readfills.f

main.f

periodicexdown.f

periodicexup.f

errorcalcdown.f

errorcalcup.f

factorialroutine.f

I fort.iun J

Figure t3.1: Overview of ('ode (;eneration System

NASA/TM-- 1999-209182

199

B.1.2 Mathernatica Modules

doall2d.geom This code is the master file and should be installed first, lI will read the input

parameters, compile the FOHTRAN code, and save the output results.

tf2d.tfelp This code writes the FORTRAN code that Imrforms the spatial interpolation us-

ing the Tensor Product form discussed in section 3.1.4. It creates the FORTRAN files:

tensorroutineup.f and tensorroutinedown.f.

ee2d.tfelp This code writes the FOtiTRAN code that performs the temporal evolution using

the Recursiw _ Tensor form discussed in section 3.2.3. It creates the FORTIiAN files:

timeadvanceup.f and timeadvancedown.f.

su2d.geom This code writes the FOIiTHAN cod(" that performs the housekeel)ing functions

such as reading and writing files, assigning initial conditions, and calculating the error

at each time step. It creates lhe FORTRAN files: initcond.f, common.h, fillfillsdown.f.

fillfillsup.f, definephysicalxy.f, detenninefills.f, roadfills.f, main.f, periodicexdown.f, peri-

odicexup.f, errorcalcdown.f, errorcaleup.f, a,,l factoriah'outine.f.

ma2d This code performs all the analysis necessary to tr_'aI the wall boumlary conditions in

an automated maimer. It creates a single file called "fillarrays". This array is a list of real

numbers that provide all the information necessary to solve the near boundary grid points

at, each time step and is descI'ibed in section 5.5. This file is r(,ad once" by the FORTRAN

code and stored in memory as a one-dimensional array.

B.1.3 FORTRAN Subroutines

It is important to minimize memory fetch strides t,o minimize cache !hisses. ()lie approach is

to use small arrays that can fit, entirely with cache. Another approach is to minimize lnemory

transfers. This is accomplished in the follow was". First,, the primitive variables at, tim(" n,

(p", u', v"), are st or_,d in a two-dimensional array A. They are then evolved to time n+ 1 and

stored in array B. Rather than copy array B hack to array A aml repeat the time advance

procedure, it is more etticien! !,o time advance the variables in array B. (O ''+1 , u ''+1 , V ''+1), alld

directly store them in array A.

NASA/TM--1999-209182

200

tensorroutineup.fThisfileperformstilespatialinterpolationusingtheTensorProduct fornl

on the data in array B.

tensorroutinedown.f This file performs the spatial interpolation using the rlensor Product

form oil the data in array A.

timeadvanceup.f This file performs the Recursive-Tensor form of the timeadvance by advanc-

ing the data in array A to array B.

timeadvancedown.f This file performs the Recursive-Tensor form of the timeadvance by ad-

vancing the data in array" B to array A.

initeond.f Tiffs fih' calculates the initial conditions [b)" all (h(" grid points in (tie computational

domain.

colnmon.h This file contains all (lie FORTRAN common [)lock data used I)y all t h(' modules.

The common block data structure is us_,d to minimize memory felches and cache misses.

fillfillsdown.f This riD, using the information fl'om file, "'fillarrays". calculates the values of all

near boundary grid points in array A.

fillfillsup.f This file, using the inforlnation from file, "'fillarrays", calculates the values of all

near boundary grid points in array B.

definephysicalxy.f This fih' assigns a physical coordinate to each grid poinl.

dt_terminefills.f This file determines which grid points are near t)otmdary grid poinls.

readfills.f This file reads the file, "fillarrays", and stores its contenls in memory for faster future

retrieval.

luain.f This file is the main FORTRAN code. It calls all the FORTRAN sul)roulim,s and reads

the inl)ut and produces the output.

periodicexdown.f This lid communicates the periodic boundary conditions on grid A. In the

parallel iml)lementatiotl, it communicates between processors.

l)eriodicexup.f This file ('ommunicat,,s the, 1)eriodic houmlary conditions on grid B. In lhe

parallel implementation, i(collHllUlli('at_'s h('lweeH l)roct,ssors.

NASA/TM-- 1999-209182

201

errorcalcdown.fThisfile calculatesthe absoluteerrorat eachtimestepof thesolutionas

comparedto tileexact,analyticalsolutionongridA.

errorealcup.f This file calculates the al)solute error at each tinle step of the solution a+scom-

pared to the exact analytical solution Olt grid B.

factorialroutine.f This file calculates all the factorials once at, the 1)eginning and stores them

ill memory. This avoids the need to recalculate tile factorials at each grid point when time

advancing using the Recursive-Tensor form.

fillarrays This file contains the list of real numbers that completely specifies how to evaluate

all the t_ear boundary grid points at each time step.

B.1.4 Outputs

The compiled FORTRAN code will produce output showing the error information at each time

st<q).

fort.iun This file will show the lllaximunl error ill the pressure at, each time step as the MESA

schemes solve the linearized Euler equations. It will also show the ratio of energy change

at each time step (which shouhl be 1, no chmlge). This file is the final product of the code

generation system.

NASA/TM--1999-209182

202

B.2 Master File - doall2d.geom

Ill this section is file, "doall2d.geom". It is tile master file and it starts the other four files

and queries for all input paramelers. It also atltomatically creates directories, compiles the

FORTRAN" codes, and submits each executable to a batch queue on IRIS syst,ems. Note thai

this ls a r_scarcb cod_. it ts constantly b_i.g rood(fled a.d may indeed contain _rrors.

(*

(* AUTHOR: Rodger W. Dyson Jr.

(* DATE : March, 1999

(* VERSION: Mathematica 3.0.2

(* COPYRIGHT 1999

(* EMPLOYER: NASA Glenn Research Center

(* 21000 Brookpark Rd.

(* Cleveland, OH

(*

,)
,)
,)
,)
,)
,)
,)

,)

,)
(* This routine will read all the MMA files and produce a complete FORTRAN code*)

(* .)
__ear[__a*_____b*_____c*____'d*_____e*_____f*_____g*___''h*''_''i*''_''j*''''k*''];

Clear["l*","m*","n*","o*","p*","q*","r*","s.","t." -u.,,,,,v,,,3;

Clear["w*","x*","y*","z."];

csize=Input["Enter the size of the stencil in one-dimension"l;

degree=Input["Enter the maximum degree for 2D problem"];

maxmeminbytes=Input["Enter the maximum amount of memory available in Mbytes."];

maxmeminbytes=maxmeminbytes*lO00000;

maxiuntop=Input["Enter the maximum iun you care to submit for batch runs."];

miniun=Input["Enter the minimum iun you care to submit for batch runs."];

maxtime=Input["Enter the maximum time you care to run the batch runs."];

readgrid=Input["Do you wish to read a grid definition file (l=Yes,O=No)"];

theta=Input["Enter the rotation angle in Radians for box "];

alpha=theta;

Print[" Generating Code for csize= ",csize," degree= ",degree];

maxiun = N[IntegerPart[Sqrt[maxmeminbytes]/Sqrt[768 + 1536 degree + 768

degree_2]33;

If[maxiun> maxiuntop, maxiun=maxiuntop3;
(*

maxmemi=Input["Enter the maximum memory grid size in one dimension"3;
*)

maxmemi=IntegerPart[(Sqrt[23*maxiun)+3];

maxmemj=maxmemi;

Print["Using maximum grid dimensions of ",N[maxmemi3," by ",N[maxmemj3];

NASA/TM--1999-209182

203

Print["And using maximum grid points per unit interval of ",N[maxiun]];

Print["Loading tf2d.tfelp"];

<< tf2d.tfelp;

Print["Generating tensorroutine.f (Computes cp,cu,cv coefficients)"];

starttf;

Print["Loading ce2d.tfelp"];

<< ce2d.tfelp;

Print["Generating factorialroutine.f (Solves factorial constants once)"];

Print["Generating timeadvanceroutine.f "];

startce;

Print["Loading su2d.geom"];

<< su2d.geom;

Print["Generating the common.h file used by all subroutines"];

Print["Generating initial condition routine initcond.f"];

Print["Generating Error Calculation subroutine errorcalcup and down.f"];

Print["Generating periodic boundary exchange subroutine periodicex.f"];

Print["Generating main FORTRAN program (Calls all other subroutines)"];

startsu;

Print["Loading ma2d"];

<< ma2d;

notcorrect=False;

Check[startma,notcorrect=True];

(* *)

(* The length of the fillarray is now known so make the common,h *)

(* *)

makecommonfile;

(* *)

(* Make New Directory and compile file *)

(* *)

alg=" c"<>ToString [cs ize] <>"o" <>ToString [degree] ;

rot="rot"<>ToString [N [theta]] ;

diun="d"<>ToString [iun] ;

dirname=alg<>"/"<>rot<>"/" <>diun;

command1="mkdir "<>ToString[alg] ;

Run [commandl] ;

command4=" cd "<>ToStr ing [alg] ;

SetDirectory [alg] ;

commandl="mkdir "<>ToString[rot] ;

Run [commandl] ;

command4="cd "<>ToString[rot] ;

NASA/TM--1999-209182

204

SetDirectory[rot];

commandl="mkdir"<>ToString[diun];
Run[command1];
SetDirectory["../.."];

command2="mv *. f "<>dirname ;

Run [command2] ;

command3="mv *.h "<>dirname;

Run [command3] ;

command35="mv fillarrays "<>dirname ;

Run [command35] ;

command4="cd "<>ToString [dirname] ;

SetDirectory [dirname] ;

filename="MesaProp_c"<>ToString[csize]<>"o"<>ToString[degree]<>".geom";

Print["Compiling Code into executable ",filename];

command5="f77 -03 -r8 -co1120 -NnlO0000 -NC500 -u -o "<>filename<>" main.f

factorialroutine.f timeadvanceup.tfelp.f timeadvancedown.tfelp.f

tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f errorcalcdown.f

periodicexup.f periodicexdown.f";

*)

(*

command5="f77 -03 -r8 -coi120 -NnlO0000 -NC500 -u -o "<>filename<>" main.f

factorialroutine.f timeadvanceup.tfelp.f timeadvancedown.tfelp.f

tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f errorcalcdown.f

readfills.f fillfillsup.f fillfillsdown.f determinefills.f rotate.f";

*)

command5="f77 -03 -r8 -co1120 -NulO0000 -NCSO0 -u -o "<>filename<>" main.f

factorialroutine.f %imeadvanceup.tfelp.f timeadvancedown.tfelp.f

tensorroutineup.f tensorroutinedown.f initcond.f errorcalcup.f

errorcalcdown.f readfills.f fillfillsup.f fillfillsdown.f determinefills.f

definephysicalxy.f";

Run[command5];

(, ..,)

(* Create the Input Files and run the codes as batch jobs *)

(, ..,)
Do[

(* Create Input File *)

ifilename =''input file"<>ToString [2" iunct] ;

stmp=OpenWrite ["input filetmp"] ;

Write [stmp, 2- iunct] ;

If [EvenQ [csize] ,

NASA/TM--1999-209182

2O5

lamtmp=O. 2, lamtmp=O. 4] ;

Write [stmp, lamtmp] ;

(*

cttmp=N[lO00 * 2"iunct / lamtmp];

*)

cttmp=N[maxtime * 2"iunct / lamtmp];

Write [stmp, cttmp] ;

(*

ecttmp=N [cttmp/100] ;

*)

ecttmp=N[10 * 2_iunct / lamtmp];

Write [strop,ecttmp] ;

wavenumberx=l ;

way enumbery= 1 ;

Write [strop,wavenumberx] ;

Write [stmp, wavenumbery] ;

Close [stmp] ;

Run["rm "<> ifilename] ;

Run["sed -e 's/\"//g' inputfiletmp >> "<>ifilename];

Run["rm inputfiletmp"] ;

(* Create the shell script *)

stmp=OpenWrite["shellscripttmp"];

Write[stmp,"#! /bin/csh"];

"#BSUB -N -u xxdyson©gauss.lerc.nasa.gov"];

"#BSUB -R irix"];

"cd /u/xxdyson/golden2D/",dirname];

Write [stmp,

Writ e [stmp,

Write [stmp,

(*

Write [stmp,

*)
command2=".

Write [stmp,

"cd ",ToString[Directory[]]];

/"<>filename<>" < ./inputfile"<>ToString[2-iunct];

command2];

Close[stmp];

Run["rm shellscript"];

Run["sed -e 's/\"//g' shellscripttmp >> shellscript"];

Run["rm shellscripttmp"];

command3="bsub -q long -R irix -J"<>filename<>ToString[2 ^iunct] <>" -u

xxdyson@gauss.lerc.nasa.gov < shellscript";

Print [command3] ;

Run [command3] ;

,{iunct, N lint egerPart [Log [miniun]/Log [2]]], N lint egerPart [Log [maxiun]/Log [23]] }] ;

SetDirectory [".. "] ;

Clear ["a*", "b*", "e*", "f*", "g*", "h*", "i*", "3 *", "k*"] ;

Clear ["l*", "n*", "o*", "p*", "q*", "r*", "s*", "t*", "u*", "v*"] ;

Clear ["w*", "x*", "y*", "z*", cp, cu, cv, cfc, datalist] ;

(*

,{degree,O, I}3

,{csize,2,2}];

NASA/TM--1999-209182

206

,)

(* Solve[{mem == 3 * (degree+l)'2 * (2*iuntmp)-2 * 64},iuntmp] bytes *)

(*

commandl="sed -e 's/\"//g' inputfiletmp >> inputfile";

command2=commandl<>ToString[2-iunct];

*)

*)

If[Nor[notcorrect],

Print["All systems seem non-singular"];

initializetimestepping;

dothetimestepping;

Print["**"_;

Print["Something was wrong in startma!!!!"];

Print[__**___;

Print["Message List=",$MessageList]

];

NASA/TM--1999-209182

207

B.3 Tensor Form of Spatial Interpolation File - tf2d.tfelp

_l'his Mathematica code will produce the FORTI_AN code that calculaWs the spatial interpolant

at each stencil using the Tensor Product, form described ilk sectiou 3.1.'1.

<< Linearhlgebra 'MatrixManipulation ';

(, *)
(* This procedure will compute the spatial coefficients using John's Tensor *)

(* form of evaluation. *)

(, *)
starttf:=(

(, *)

(* Initialize and Get Problem Specifications *)

(, *)

initproc;

$... @)

(* Determine the polynomial interpolant for the x-direction *)

(, .. ,)

getintformx;

@ .. @)

(* Compute the S data which is located at x=O on each strata *)

(, *)

computes;

(, *)

(* Determine the polynomial interpolant for the y-direction *)
(, *)

getintformy;

_ ... _)

(* Compute the spatial interpolant coefficients *)

(, ..,)

computea;

,)

(* Generate the FOKTRAN subroutine solving the cp,cu, and cv coefficients *)

(, *)

makecompleteroutine;

_ .. @)

(* Test the interpolant by evaluating at all data points *)

(, ...*)

(*

testall;

*)

NASA/TM-- 1999-209182

208

);

initproc:=(

Clear[a,s,xc,yc,xf,yf];

Run["rm tensorroutine.f"];

Run["rm tensorroutinetmp.f"];

If [Not [ValueQ [csize]] ,

csize=Input["Enter the size of the stencil in one-dimension"];

];

If [Not [ValueO [degree]] ,

degree=Input["Enter the maximum degree for 2D problem"];

<* *)

(* Make a list of all the data elements at a single grid point *)

(* *)

datalist={};

Do[

Do[

AppendTo[datalist,fc[dx,dy,i,j]]

_{dx,O,degree}]

,{dy,O,degree}];

* .. *)

(* Calculate the spatial interpolant form to be used for all directions *)

(* ,)

(* *)

(* Determine the number of data elements in the x direction *)

(* *)

Cases[datalist,fc[_iO,i,j]];

interpolantorder=csize* Count[datalist,fc[_,O,i,j]];

);

(, ,)

(* Determine one-dimensional interpolant form in x direction *)

(,)

getintformx:=(

xf[x_]:=Sum[xc[i] x-i,{i,O,interpolantorder-l}];

variablelist=CoefficientList[xf[x],x];

evenvariablelist={};

oddvariablelist={};

Do[AppendTo[evenvariablelist,xc[i]],{i,O,interpolantorder-1,2}];

Do[AppendTo[oddvariablelist, xc[i]],{i,l,interpolantorder-1,2}];

* .. *)

NASAFFM--1999-209182

209

(* Find the values of the coefficients c for c2 stencil *)

(, *)

If [EvenQ [csize] ,

(* *)

(* Solve the 1D interpolant by splitting into two independent sets of equation*)

(, *)

evenequat ionlist =<} ;

Do[

Do[

(*

AppendTo[equationlist,(D[xf[x],<x,dx}] /. <x->(ptct h) - h/2}) ==

fc[dx,dy,ptct, j]] ;

AppendTo[equationlist,(D[xf[x],{x,dx}] /. {x->-(ptct h) + h/2}) ==

fc[dx,dy, 1-ptct, j]] ;

*)

AppendTo[evenequationlist, (D[xf [x] ,{x,dx}] /. {x->(ptct h) -

h/2})+(D[xf[x],{x,dx}] /. <x->-(ptct h) + h/2}) == fc[dx,dy,ptct,j]

+fc [dx,dy, 1-ptct,j]] ;

If [dx+l<=degree,

AppendTo[evenequationlist,(D[xf[x],{x,dx+l}] /. {x->(ptct h) -

h/2})-(D[xf[x],{x,dx+l}] /. {x->-(ptct h) + h/2}) == fc[dx+l,dy,ptct,j]

-fc [dx+l,dy, l-ptct,3]]] ;

,{ptct, 1,csize/2}]

,{dx,0,degree,2}] ;

oddequationlist={} ;

Do[

Do[

AppendTo[oddequationlist,(D[xf[x],{x,dx}] /. {x->(ptct h) -

h/2})-(D[xf[x],{x,dx}] /. {x->-(ptct h) + h/2}) == fc[dx,dy,ptct,j]

-fc [dx ,dy, l-ptct ,j]] ;

If [dx+l<=degree,

AppendTo[oddequationlist,(D[xf[x],{x,dx+l}] /. {x->(ptct h) -

h/2})+(D[xf[x],{x,dx+1}] /. {x->-(ptct h) + h/2}) == fc[dx+l,dy,ptct,j]

+f c [dx+ 1, dy, 1-pt ct, j]]] ;

,{ptct, 1, csize/2}]

,{dx,O,degree, 2}] ;

@ _)

(* Solve the even derivatives *)

(, *)
matrixrhs=LinearEquationsToMatrices[evenequationlist,evenvariablelist];

matrix=matrixrhs[[l]];

rhs=matrixrhs[[2]];

xvector=Collect[LinearSolve[matrix,rhs],fc[.......]];

Clear[aside,bside];

makeequal[aside_,bside_]: = aside=bside;

pairs = {evenvariablelist, xvector};

Apply[makeequal,pairs];

NASA/TM-- 1999-209182

210

(* *)

(* Solve the odd derivatives *)

(* *)

matrixrhs=LinearEquationsToMatrices [oddequationlist, oddvariablelist] ;

matrix=matrixrhs [[I]] ;

rhs=matrixrhs [[211 ;

xvector=Collect [LinearSolve [matrix, rhs] ,fc [.......]] ;

Clear [aside, bside] ;

makeequal[aside ,be ide]:= aside=bside;

pairs = {oddvariablelist, xvector};

Apply [makeequal, pairs] ;

];

If [0ddQ [csize] ,

(* *)

(* This system will never get too Big, I think! so do as one group *)

(* ,)

equationlist={};

Do[

Do[

AppendTo[equationlist,(D[xf[x],{x,dx}] /. {x->(ptct) h}) == fc[dx,dy,ptct,j]];

,{ptct,-IntegerPart[csize/2],IntegerPart[csize/2]}]

,{dx,O,degree}];

matrixrhs=LinearEquationsToMatrices[equationlist,variablelist];

matrix=matrixrhs[[1]];

rhs=matrixrhs[[2]];

xvector=Collect[LinearSolve[matrix,rhs],fc[.......]];

Clear[aside,bside];

makeequal[aside_,bside_]:= aside=bside;

pairs = {variablelist, xvector};

Apply[makeequal,pairs];

];
(,

fc[dx_,dy_,i_,3_]:=D[ff[x,y],{x,dx},{y,dy}]/.{x->i,y->j}

fc[dx_,dy_,i_,j_]:=D[f[x,y],{x,dx},{y,dy}]/.{x->i,y->j}

,)

);

(* *)

(* Now have the form of the interpolant in one dimension *)

(* the c[i] coefficient represents the ith derivative of the function being *)

(* interpolated. .)

(, ...,)

NASAFFM-- 1999-209182

211

(, *)

(* Loop through all the y terms *)

(* *)
(* Compute all the S terms for x dimension *)

(, *)

computes:=(

numberofcterms=Length[variablelist]-l;

If[EvenQ[csize],

(* Works

Do[

DoE

DoE

s[dy,iindex,j]=Collect[xc[iindex],fc[.......]];

,{iindex,O,numberofcterms}]

,{dy,O,degree}]

,{j,l-(csize/2),csize/2}];

*)

_ _)

(* Create FORTRAN Do loops *)

(, ,)
(* *)
(* Define the fc *)

(* *)
(*
Do[
Do[Do[

xnot =''";

Do[

xnot =xnot<>"x '';

, {xct, 1, dx}] ;
ynot="" ;

Do[

ynot =ynot<>"y" ;

,{yet, 1,dy}] ;

xnot="" ;

xnot =ToString [dx] <>"x" ;

ynot="" ;

ynot=ToString [dy] <>"y" ;

dnotation=xnot<>ynot ;

fcdnotation="fc"<>xnot<>ynot;

fc[dx,dy,i,j]=fcdnotation[gridi+i,gridj+j]

fcdnotation="fctmp";

fc[dx,dy,i,j]=fcdnotation[gridi+i,gridj+j,dx,dy]

,{dx,O,degree}]

,{dy,O,degree}]

,{i,l-(csize/2),csize/2}];

*)

NASA/TM--1999-209182

212

f cdnot at ion="f ctmp" ;

fc [dx_, dy_, i_, j_] : --fcdnotation [gridi+i ,gridj+j, dx,dy] ;

Clear [dy, j* ;

stmp=OpenWrit e ["tensorrout inetmp, f", FormatType->FortranForm] ;

Write[stmp,"c****************** Doing the Sy terms ************************

Write[stmp," do dy=O, degree"*;

(*

Do[

.)

Write[stmp," do j=l-(",csize/2,"),",csize/2];

Do[

Write[stmp," ",s [dy,iindex,j* ,"=",xc[iindex]] ;

,{iindex, O, ntlmberof ct erms}] ,

Write[stmp," end do"] ;

Write[stmp," end do"*;

(*

,{dy,O,degree}* ,

*)

Close[strop* ;

Clear [fc] ,

Kun["sed -e 's/\"//g' tensorroutinetmp.f >> tensorroutine.f"];

Run ["rm tensorrout inetmp, f"] ,

];

If [OddQ [csize] ,

(* WORKS

Do[

Do[

Do[

s [dy, iindex, j] =xc [iindex]

,{iindex, O, ntunberof ,terms}]

,{dy,O,degree}]

,{j ,-IntegerPart [csize/2* ,IntegerPart [csize/2]}] ;

*)

(* *)

(* Create FORTRAN Do loops *)

(* *)
(* *)

(* Define the fc *)

(, ,)
(*

Do[

Do [Do [

xnot=,,,, •

Do[

xnot=xnot <>"x '';

, {xct, 1,dx}] ,

ynot ="" ,"

NASA/TM--1999-209182

213

Do[

ynot=ynot <>"y" ;

,{yct, l,dy}] ;

xnot="" ;

xnot =ToString [dx] <>" x" ;

ynot="" ;

ynot =ToStr ing [dy] <> "y";

dnotation=xnot<>ynot ;

f cdnot at ion= "f c"<>dnotat ion;

f c [dx, dy, i, j]=f cdnot ation [gridi+i, grid] +j]

,{dx, O, degree}]

,{dy, O, degree}]

,{i,-Int egerPart [cs ize/2] ,Int egerPart [cs ize/2] }] ;

*)

f cdnot at ion="f ctmp" ;

fc [dx_, dy_, i_, j _] :=f cdnot ation [gridi+i, gridj +j, dx, dy] ;

Clear [dy,j] ;

stmp=DpenWrit e ["tensorroutinetmp. f", FormatType->FortranForm] ;

(*
Do[

*)

Write[stmp,***************************** Doing the Sy terms

***********$*************c"] ;

Write [strop," do dy=0, degree"] ;

Write[stmp," do]=",-IntegerPart[csize/2],",",IntegerPart[csize/2]] ;

Do[

Write [stmp," ",s [dy,iindex,3] ,"=",xc[iindex]] ;

,{iindex, 0 ,numberof ct erms}] ;

Write[stmp," end do"];

Write[strop," end do"];

(*

,{dy, 0,degree}] ,

*)

Close[stmp] ;

Clear [fc] ;

Run["sed -e 's/\"//g' tensorroutinetmp.f >> tensorroutine.f"];

Kun ['*rm tensorroutinetmp, f"] ;

];

);

(* *)

(* Now compute the spatial coefficients *)

(,,)

* .. *)

(* Compute the yc coefficients for use in the y direction *)

(, ..,)

NASA/TM-- 199%209182

21,1

getint f ormy : = (

yf [y_] : =Sum [yc [i] y'i, {i, O, interpolantorder-1}] ;

variablelist=CoefficientList [yf [y] ,y] ;

evenvariablelist:{};

oddvariablelist:{};

Do[AppendTo[evenvariablelist,yc[i]],{i,O,interpolantorder-i,2}];

Do[AppendTo[oddvariablelist, yc[i]],{i,l,interpolantorder-1,2}];

(* *)

(* Find the values of the coefficients c for c2 stencil *)

(* *)

If [EvenQ [csize] ,

(* *)

(* Solve the ID interpolant by splitting into two independent sets of equation*)

(, *)

evenequationlist={} ;

Do[

Do[

AppendTo[evenequationlist, (D[yf [y] ,{y,dy}] /. {y->(ptct h) -

h/2})+(D[yf[y] ,{y,dy}] /. {y->-(ptct h) + h/2}) :: fc[dx,dy,i,ptct]
+fc[dx,dy,i, l-ptct]] ;

If [dy+l<=degree,

AppendTo[evenequationlist, (D[yf [y] ,{y,dy+l}] /. {y->(ptct h) -

h/2})-(D[yf[y] ,{y,dy+l}] /. {y->-(ptct h) + h/2}) == fc[dx,dy+l,i,ptct]

-fc[dx,dy+l,i,l-ptct]]] ;

, {ptct, 1, csize/2}]

,{dy,O,degree,2}] ;

oddequationlist={};

Do[

Do[

AppendTo[oddequationlist,(D[yf[y],{y,dy}] /. {y->(ptct h) -

h/2})-(D[yf[y],{y,dy}] /. {y->-(ptct h) + h/2}) == fc[dx,dy,i,ptct]

-fc[dx,dy,i,1-ptct]];

If[dy+l<=degree,

AppendTo[oddequationlist,(D[yf[y],{y,dy+1}] /. {y->(ptct h) -

h/2})+(D[yf[y],{y,dy+1}] /. {y->-(ptct h) + h/2}) == fc[dx,dy+1,i,ptct]

+fc[dx,dy+l,i,l-ptct]]];

,{ptct,l,csize/2}]

,{dy,O,degree,2}];

(* *)

(* Solve the even derivatives *)

(, ,)

NASA/TM--1999-209182

215

matrixrhs=LinearEquationsToMatrices [evenequationlist, evenvariablelist] ;

matrix=matrixrhs [[I]] ;

rhs=matrixzhs [[2]] ;

xvector=Collect [LinearSolve [matrix, rhs] ,fc [.......]] ;

Clear [aside, bside] ;

makeequal [aside ,bmide_] := aside=bside ;

pairs = <evenvariablelist, xvector};

Apply [makeequal, pairs] ;

(* Solve the odd derivatives *)

(* *)

matrixrhs=LinearEquationsToMatrices [oddequat ionlist ,oddvariablelist] ;

matrix=matrixrhs [[I]] ;

rhs=matrixrhs [[2]] ;

xvector=Collect [LinearSolve [matrix, rhs] ,f c [.......]] ;

Clear [aside ,bside] ;

makeequal [aside ,bside_] := aside=bside ;

pairs = {oddvariablelist, xvector};

Apply [makeequal, pairs] ;

];

If [Odd_ [cs ize] ,

equat ionlist={} ;

Do[

Do[

AppendTo[equationlist, (D[yf[y], {y,dy}] /. {y->(ptct) h}) :: fc [dx,dy, i,ptct]] ;

,{ptct, -IntegerPart [csize/2] ,IntegerPart [csize/2] }]

,{dy,O,degree}] ;

matrixrhs=LinearEquat ionsToMatrices [equationlist, variablelist] ;

matrix=matrixrhs [[1]] ;

rhs=matrixrhs [[2]] ;

xvector=Collect [LinearSolve [matrix, rhs], fc [.......]] ;

Clear [aside ,bside] ;

makeequal[aside_,bside]:= aside=bside;

pairs = {variablelist, xvector};

Apply [makeequal, pairs] ;

];

);

(* *)

(* Now the c coefficients represent the y interpolator spatial coeff. *)

(* Substitute the fc with the s data *)

(* *)

(* Compute Spatial Coefficients *)

NASA/TM--1999-209182

_16

(* *)

computea:=(

(* WORKS

Do[

Do[

Clear[negdx,newdy,newi,newj];

a[iindex,jindex]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_] ->

s[newdy,newdx,newj] } /. {dx->iindex}

,{jindex,O,numberofcterms}]

,{iindex,O,nlLmberofcterms}3;

*)

(* *)

(* Create FORTRAN Do loops *)

(* *)

Clear[dy,j,s];

stmp=OpenWrite["tensorroutinetmp.f",FormatType->FortranForm];

Write[stmp,"c*************** Doing the fctmp coefficients *******************'*;

Write[stmp," do iindex=O,",numberofcterms];

Do[

Write[stmp," ",cffc[iindex,jindex,O],"=",yc[jindex] /.

{fc[newdx:_,newdy:_,newi:_,newj:_] -> s[newdy,newdx,newj] } /. {dx->iindex}];

,{jindex,O,numberofcterms}];

Write[stmp," end do"];

Close[stmp];

hun["sed -e 's/\"//g' tensorroutinetmp.f >> tensorroutine.f"];

Run["rm tensorroutinetmp.f"];

);

(* *)

(* This will read tensoroutine.f, and duplicate three times with p,u,v in place *)

(* of fc ,)

(* *)

makecompleteroutine:=(

(* Make the three copies *)

(* *)

hun["rm tensorroutinetmpup.f"];

stmp=OpenAppend["tensorroutinetmpup.f",FormatType->FortranForm];

Write[stmp,"c**************************************c"];

Write[stmp,"c* Solving the p spatial coefficients *c"];

Write[stmp,"c**************************************c"];

Close[stmp];

Run["sed -e 's/ffc/p/g' -e 's/fctmp/p/g' tensorroutine.f >>

tensorroutinetmpup.f"];

stmp=OpenAppend["tensorroutinetmpup.f",FormatType->FortranForm];

Write[stmp,"c**************************************c"];

NASA/TM--1999-209182

217

Write[stmp,"c* Solving the u spatial coefficients *c"];

Write [stmp, "*** ;

Close [stmp] ;

Run["sed-e 's/ffc/u/g'-e 's/fctmp/u/g' tensorroutine.f >>

t ensorrout inetmpup, f "] ;

stmp=0penAppend ["t ensorrout inetmpup, f", FormatType->FortranForm] ;

Write [stmp, *** ;

Write[stmp,"** Solving the v spatial coefficients *c"];

Write [stmp, *** ;

Close [strop* ;

Run["sed-e 's/ffc/v/g'-e 's/fctmp/v/g' tensorroutine.f >>

t ensorroutinetmpup, f"] ;

(* *)

(* Make the down version *)

(* *)

Kun["rm tensorroutinetmpdown.f"];

stmp=0penAppend["tensorroutinetmpdown.f",FormatType->FortranForm];

Write[stmp,"c**************************************c"];

Write[stmp,"c* Solving the p spatial coefficients *c"];

Write[stmp,"c**************************************c"];

Close[stmp];

Run["sed -e 's/ffc/p/g' -e 's/fctmp/np/g' tensorroutine.f >>

tensorroutinetmpdown.f"];

stmp=OpenAppend["tensorroutinetmpdown.f",FormatType->FortranForm];

Write[stmp,"c**************************************c"];

Write[stmp,"c* Solving the u spatial coefficients *c"];

Write[stmp,"c**************************************c"];

Close[stmpS;

Run["sed -e 's/ffc/u/g' -e 's/fctmp/nu/g' tensorroutine.f >>

tensorroutinetmpdown.f"];

stmp=OpenAppend["tensorroutinetmpdown.f",FormatType->FortranForm];

Write [stmp, *** ;

Write[stmp,"c* Solving the v spatial coefficients *c"];

Write [strop, *** ;

Close [strop* ;

Run["sed -e 's/ffc/v/g' -e 's/fctmp/nv/g' tensorroutine.f >>

tensorroutinetmpdown.f"];

Run["rm tensorroutine.f"];

stmp=OpenAppend ["t ensorroutinetmpup, f", FormatType->FortranForm] ;

Write [strop," end"] ;

Close [strop* ;

stmp=OpenAppend ["tensorroutinetmpdown. f", FormatType->FortranForm] ;

Write [strop," end"] ;

Close [stmp] ;

stmp=0penWrite["tensorroutinelup.f",FormatType->FortranForm];

NASA/TM-- 1999-209182

218

Write [stmp," subroutine tensorup"] ;

Write [stmp," include 'common, h)"] ;

Close [strops ;

stmp=OpenWrit e ["tensorroutineldown. f°',FormatType->FortranForml ;

Write [stmp," subrout ine tensordown"] ;

Write [strop," include 'common, h '"] ;

Close [strop] ;

Run["sed -e 's/\"//g' tensorroutinelup.f > tensorroutineup.f"];

Run["sed -e 's/\"//g' tensorroutinetmpup.f >> tensorroutineup.f"];

Run["sed -e 's/\"//g' tensorroutineldown.f > tensorroutinedown.f"];

Run["sed -e 's/\"//g' tensorroutinetmpdown.f >> tensorroutinedown.f"];

Run["rm tensorroutinelup.f"];

Run["rm tensorroutineldown.f"];

Run["rm tensorroutinetmpup.f"];

Run["rm tensorroutinetmpdown.f"];

);

NASA/TM-- 1999-209182

219

B.4 Temporal Evolution Using Recursive Tensor Form File

- ce2d.tfelp

This code will creale the FORTRAN code for computing the temporal evolution of each grid

point at each time step using tile method discussed in section 3.2.3.

(* *)

(* calculateelp:=(*)

(* *)

startce:=(

Run ["rm t imeadvancerout ine. f"] ;

Run ["rm shiftmult iplyrout ine. f"] ;

(* *)

(* Get input data and setup interpolating polynomial forms *)

(, ... ,)

initproc ;

(* Set linearized euler equations equal to zero *)

(, .. ,)

setupequations;

(* Express time coefficients as space coefficients *)

(, ...,)

determineelp;

(* *)

(* Write Factorial Routine *)

(* *)
makefactorialfile;

(* *)

(* Rearrange exact propagator time advance solutions as a linear *)

(* combination of cp,cu,cv spatial coefficients *)

(, ...,)

(*

collectterms;

*)

(* *)

(* Find the constant equation for each cp,cu,and cv, and write to FORTRAN *)

(* *)
(*

getkvalues;

*)

(* Generate the time advance shift multiply routine and write to FORTRAN *)

NASA/TM-- 1999-209182

220

*)

shiftmultiply;

*)

(* *)

(* To avoid copying memory, make an up and down time advance *)
(* *)

makedownanduptimeadvance;

);

initproc :=(

Clear [cp,cu, cv,pp,uu,vv,p,u,v] ;

If [Not [ValueQ [csize]] ,

csize = Input["Enter the stencil size of the problem: "3;

3;

If [Not [ValueQ [degree]],

degree = Input["Enter the maximum degree of the stencil data: "]

];

maxind = (csize*degree) + (csize-1);

Collect [D[p[x,y,t],x]/. {x->O, y->O}, {cp [.....],cu [.....],cv [.....]}] ;

(* *)

(* Form the interpolating polynomial with unknowns cp,cu,cv[i,j] *)

p[x_,y_,t_]:=Sum[cp[i,j,k] x'i y_j t^k, {j,O,maxind},{i,O,maxind},{k,O,(csize

degree)+ (csize(degree+2)-2)-(i+j)}];

u[x_,y_,t_]:=Sum[cu[i,j,k] x'i y-j t_k, {j,O,maxind},{i,O,maxind},{k,O,(csize

degree) + (csize(degree+2)-2)-(i+j)}];

v[x_,y_,t_]:=Sum[cv[i,j,k] x_i y_j t'k, {j,O,maxind},{i,O,maxind},{k,O,(csize

degree) + (csize(degzee+2)-2)-(i+j)}];

);

setupequations:=(

(.)

(* Linearized Euler Equations *)

(* *)

equationl= Expand [D[p[x,y,t],t] + mx D[p[x,y,t] ,x] + my D[p[x,y,t] ,y] +

D[u[x,y,t],x] + D[v[x,y,t],y]];

(*

equation345= Expand[D[D[p[x,y,t],t] + mx D[p[x,y,t],x] + my D[p[x,y,t],y] +

D[u[x,y,t] ,x] + D [v[x,y,t] ,y] ,{x,3},{y,3},{t,5}]

];

NASA/TM-- 199%209182

,)

equation2= Expand [D [u [x , y , t] , t] +mx D[u[x,y,t],x] + my D[u[x,y,t],y] +

D[p[x,y,t],x]] ;

equation3= Expand [D [v [x ,y ,t] ,t] + mx D[v[x,y,t] ,x] + my D[v[x,y,t] ,y] +

D[p[x,y,t] ,y]] ;

);

det ermineelp := (

Clear [a,b,c] ;

(* *)

(* These conditions are derived directly from LEE are required for exact

(* propagators

(*

,)
,)
.)

ncp[a_,b_,c_]:=(-(b+l)(my cp[a,b+l,c-1] + cv[a,b+l,c-1]) -(a+l) (rex

cp[a+l,b,c-1] + cu[a+l,b,c-1]))/c;

ncu[a_,b_,c_]:=(-(b+l) my cu[a,b+l,c-1] - (a+l) (mx cu[a+l,b,c-1] +

cp[a+l,b,c-1]))/c;

ncv[a_,b_,c_]:=(-(b+l) (my cv[a,b+l,c-1] + cp[a,b+l,c-1]) -(a+l) mx

cv[a+l,b,c-1])/c;

hun["rm timeadvance.tfelp.f"];

stmp=OpenWrite["timeadvance.tfelptmp.f",FormatType->FortranForm];

Write[stmp," subroutine timeadvance"];

Write[stmp," include 'conuaon.h'"];

Write[stm____c***___];

Write[stmp,"c* Calculate the cp[..... >O],cu[..... >O],cv[..... >0] terms now *c'];

Write[stm____c***c__];

Write [strop,"

Write [stmp,"

(*

Write [strop,"

*)

Write [strop,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp ,"

do kindex=l, 2*maxind "];

do jindex=O, maxind "];

do iindex=0, 2*maxind-kindex-jindex "];

do iindex=O, min(maxind,2*maxind-kindex-jindex)"];

cp(iindex,jindex,kindex)=",ncp[iindex,jindex,kindexS];

cu(iindex,]index,kindex)=",ncu[iindex,jindex,kindex]];

cv(iindex,jindex,kindex)=",ncv[iindex,3index,kindex]];

end do "];

end do "];

end do "];

Do [Do [

xilot =- ,,;

xnot=ToString [dx] <> "x" ;

ynot="";

ynot=ToString [dy] <>"y" ;

dnot at ion=xnot <>ynot ;

*)

(*

NASA/TM-- 1999-209182

222

Write[stmp,"c************** Begin time advance using Homer Form

************c"] ;

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop ,"

Write [strop ,"

do dy=O,deg ree''] ;

do dx=O,deg ree''] ;

psum=O. 0"] ;

usum=O. 0"] ;

vsum=O. 0"] ;

Write[ssmp," do kindex=O,", 2*maxind];

Write[stmp," psum=psum+fac(dx) * Tac(dy) *

physical_step**kindex*cp(dx,dy,kindex)"];

Write[stmp," enddo "];

Write[stmp," do kindex=O,", 2*maxind];

Write[stmp," usum=usum+fac(dx) * fac(dy) *

physicaltstep**kindex*cu(dx,dy,kindex)"];

Write[stmp," enddo "3;

Write[stmp," do kindex=O,", 2*maxind];

Write[stmp," vsum=vsum+Tac(dx) * fac(dy) *

physicaltstep**kindex*cv(dx,dy,kindex)"];

Write[stmp," enddo "1;

Write[stmp," np(g ridi+stagger'gridj+stagger'dx'dy)=psum''];

Write[s_mp," nu(g ridi+stagger'gridj+stagger'dx'dy)=usum''];

Write[stmp," nv(g ridi+stagger'gridj+stagger'dx'dy)=vsum''];

Write[stmp," end do"];

Write [strop," end do"] ;

Write[stmp,"c****************** Done advancing time **************c"];

*)
Write[stmp,"c************** Begin time advance using Hornet Form

************ C"] ;

Write [strop,"

Write [stmp,"

Wrise [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

do dy=O,degree"] ;

do dx=O,degree"] ;

factterm=Tac(dx).fac(dy) "] ;

psum=O. 0"] ;

usum=O. 0"] ;

vsum=O. 0"] ;

do kindex=",2*maxind,",l,-l"];

psum=physicaltstep*((_actterm * cP (dx,dy'kindex))+Psum)'°];

enddo "];

do kindex=", 2*maxind,'''l'-l''];

usum=physicaltstep*((factterm * cu(dx,dy,kindex))+usum)"];

enddo "];

do kindex=",2*maxind,",l,-1"];

vsum=physicaltstep*((factterm * cv(dx,dy,kindex))+vsum)"];

enddo "];

NASA/TM-- 1999-2(19182

22:3

Write [strop,"

np (gr idi+ st agger ,gridj +stagger, dx, dy) =psum+ (cp (dx, dy, 0) *f actterm) "] ;

Write [stmp,"

nu (gr idi+ st agger, gridj +stagger, dx, dy)=usum+ (cu(dx, dy, 0) *f actterm) "] ;

Write [strop,"

nv (gridi+stagger, gridj +stagger, dx, dy)=vsum+ (cv (dx, dy, 0) *f actt erm) "] ;

Write [stmp," end do"] ;

Write [stmp," end do"] ,

Write[stmp,"c****************** Done advancing time **************c"] ;

(*

,{dx ,O,degree}]

,{dy,O,degree}] ;

*)

Write [stmp," end"] ;

Close [stmp] ;

Run["sed -e 's/\"//g' timeadva/ice.t_elptmp.f >> timeadvance.tfelp.f"] ;

Run ["rm t imeadvance, tf elptmp, f "] ;

);

(. *)

(* Create Factorial FORTRAN subroutine to reduce multiplies *)

(, *)

makef actorialf ile := (

Run ["rm factorialroutine, f"] ;

stmp=OpenWrit e ["factorialroutinetmp. f", FormatType->FortranForm] ;

Write [stmp," subroutine computefactorials"] ;

Write [stmp," include 'common, h' "] ;

Do[

Write[stmp," fac(",ct,"):" ,ct !] ;

,{ct,O,degree}];

Write [stmp," end"] ;

Close [stmp] ;

Run["sed -e 's/\"//g' factorialroutinetmp.f >> factorialroutine.f"] ;

Run ["rm _actorialroutinetmp. f"] ;

);

shiftmultiply:=(

(, *)

(* Create the shift multiply for time advancing with minimal multiplies *)

(* and data storage, keep memory together using multiple loops *)

(, *)

stmp=0penWrite["shiftmultiplyroutinetmp.f",FormatType->FortranForm];

Write[stmp,"

Write[stmp,"

subroutine shiftmultiply"];

include 'common.h'"];

(*

Write[stmp,"

Write[stmp,"

*)

do dy=O,degree"];

do dx=O,degree"];

NASAFFM-- 1999-209182

Do [Do [

Write [strop, "c*********************** Adva_cing ",dx, '*x", dy, "y","

************** c"] ;

Write [strop," psum=O"] ;

Write [strop," ustun=O"] ;

Write [strop," vsum=O"] ;

Write [stmp ,"

Write [stmp,"

terms

do]index=O, maxind-"'dy];

do iindex=O, maxind-'''dx];

Write[stmp,"

m_ac=(_c(iindex+,,,dx,,,),fac(jindex+",dy,"))/(_ac(iindex)*_ac(jindex))'']"

Write[stmp," mfacp=cp(iindex+,,,dx,,,,,,,,,jindex+- dy,") * m_ac"];

Write[stmp," P sum=psttm+(m_acp*ppkp(iindex'jindex))''];

,, uslum=nsum+(m_acp*uukp(iindex,jindex))"];
Write[stmp];

Write[stmp," vsum=vsum+(mfacp*vvkp(llndex']_ndex))

Write[stmp," end do"];

WriZe[stmp," end do"];

Write [strop ,"

Write [strop ,"

do jindex=O, maxind-'''dy];

do iindex=O, maxind-'''dx];

Write[stmp,"

mTac=(fac(iindex+-,dx,")*_c(jindex+",dY,"))/(fac(iindex)*T_c(jindex))"]"

Write[stmp," m_acu=cu(iindex+.,dx,,, .,.jindex+,,,d_ ,i) * mTac"];

Write[stmp," ps_hm=psttm+(m_acu*ppku(iindex,jindex) ;

Write[stmp," us_m=uslum+(mfacu*uuku(iindex'jindex))"];

Write[stmp," vsum=vsum+(m_acu*vvkn(iindex'jindex))"];

Write[stmp," end do"];

Write[stmp," end do"];

Write [strop ," do j index =0 ,maxind-" ,dy] ;

Write [strop," do iindex =0 ,maxind-", dx] ;

Write [strop,"

mf ac = (f ac (iindex+" ,dx ,") *f _c (j index+", dy, "))/(¢ac (iindex) *f ac (j index)) "] "

Write[stmp," mfacv =cv(iindex+",dx'''''''''jindex+'''dy''') * mfac"] ;

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [strop,"

psum=psum+(mfacv*ppkv(iindex,3 index))''];

usum=usum+(mfacv*uukv(iindex,3index))"];

vsum=vsum+(mTacv*vvkv(iindex,3index))"];

end do"];

end do"];

xnot=,,,' ;

xnot =ToString [dx] <>"x" ;

yno$="" ;

ynot =ToString [dy] <> "y" ;

dn°tat i°n=xn°t<>yn°t ; dnotation," (grld_+stagger ,grldj +stagger) =Psum''] '

Write [strop ," np", ,gridj +stagger)=usum"] •

Write [stmp ," nu", dnot at ion ," (gridi+st agger

Write [stmp," nv", dnot at ion ," (_ridi+st a_ger, gridj +st a_er) =vsum"] ;

Write[stmp, *'******************* Done advancing ",dnotation," terms

NASA/TM_I999-209182

225

***********************c"] _

(*

Write [stmp,"

Write [stmp,"

*)

,{dx,O,degree}]

,{dy,O,degree}] ;

end do"];

end do"];

Write [strop ," end"] ;

Close [strop] ;

Kun["sed -e 'sl\"//g' shiftmultiplyroutinetmp.f >> shiftmultiplyroutine.f"];

Kun["rm shiftmultiplyroutinetmp.f"];

Do [Do [

psum=O;

usum=O;

vsum=O;

Do[

Do[

mfac =(fac [iindex+dx] *fac [j index+dy])/(fat [iindex] *fac [j index]) ;

psum

psum

psum

= psum+(mfac*ppkp[iindex,jindex] * cp[iindex+dx,jindex+dy]

= psum+(mfac*ppku[iindex,jindex] * cu[iindex+dx,sindex+dy]

= psum+(mfac*ppkv[iindex,jindex] * cv[iindex+dx,sindex+dy]

usum

usum

usum

= usum+(mfac*uukp[iindex,jindex] * cp[iindex+dx,jindex+dy]

= usum+(mfac*uuku[iindex,jindex] * cu[iindex+dx,jindex+dy]

= usum+(mfac*uukv[iindex,jindex] * cv[iindex+dx,jindex+dy]

vsum = vsum+ mfac*vvkp[iindex,]index] * cp[iindex+dx,jindex+dy]

vsllm = vsum+ mfac*vvku[iindex,jindex] * cu[iindex+dx,jindex+dy]

vsum = vsum+ mfac*vvkv[iindex,jindex] * cv[iindex+dx,jindex+dy]

,{iindex,O,maxind-dx}]

,{jindex,O,maxind-dy}];

p[dx,dy]=psum;

u[dx,dy]=usum;

v[dx,dy]=vsum;

,{dx,O,degree}];

,{dy,O,degree}];

);

fac [x_] ::x ! ;

makeequal := (

Do [Do [

NASA/TM--1999-209182

226

¢p [iindex, j index ,0] =cp [iindex, jindex] ;

¢u [iindex, j index, O] =cu [iindex, jindex] ;

cv [iindex, j index, O] =cv [iindex, jindex] ;

,{iindex, O, maxind}]

,{j index, O, maxind}] ;

);

makedownanduptimeadvance:=(

Run["rm timeadvanceup.tfelp.f"];

Run["sed -e 's/timeadvance/timeadvanceup/g' timeadvance.tfelp.f >>

timeadvanceup.tfelp.f"];

Run["rm timeadvancedown.tfelp.f'];

Run["sed -e 's/timeadvance/timeadvancedown/g' -e 's/np/p/g' -e 's/nu/u/g' -e

's/nv/v/g' timeadvance.tfelp.f >> timeadvancedown.tfelp.f"];

Run["rm timeadvance.tfelp.f'];

);

NASA/TM-- 1999-209182

227

B.5 Create All The Administrative Files - su2d.geom

This code will create the FORTRAN code that computes the initial condit.iotls, checks tile errors

at. each time step, reads the fill file described in section 5.5, and constructs the FORTRAN

common data area.

startsu:=(

(* This is done separately after ma2d so that length of fillarrays is known

makecommonfile;

*)
makeinitcondfile;

makeerrorcalcupfile;

makeerrorcalcdownfile;

makemainfile;

(*
makeperiodicexfile;

*)
makefillfillsfile;

makereadfillsfile;

(* Put it directly in code

makerotatefile;

*)
makedeterminefillsfile;

makedefinephysicalxyfile;

);

(* *)

(* This procedure creates the common file used by all subroutines *)

(* Instead of using parameters, this permits easier inlining later *)

(* and minimizes memory moves to maxmimize floating point performance *)

(* *)
makecommonf ile := (

Print ["Removing common.h"] ;

Run["rm conu_on.h"] ;

Print ["Generating common, h"] ;

stmp=OpenWrit e [" commontmp, h", FormatType->FortranForm] ;

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

integer maxind,maxi,maxj,memcost"];

real pi,alpha"];

parameter (maxind=",maxind,")"];

common maxi,max] "];

integer maxmemi,maxmemj,maxlength "];

parameter (maxmemi=",maxmemi,")"];

parameter (maxmemj=",maxmemj,")"];

parameter (maxlength=",maxlength,")"];

parameter (alpha=",N[alpha],")"];

($

Write [strop,"

Write [stmp,"

*)
Write [strop,"

parameter (maxi=",maxi,") '']

parameter (maxj=",maxj,")"]

parameter (pi ='',N[Pi,30],")''];

NASA/TM--1999-209182

228

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Writ e [strop,"

Writ e [strop ,"

Writ e [stmp,"

Write [stmp,"

Write [strop,"

Write [stmp, "

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

physicalx (-maxmemi

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

s (0 : " ,degree, ",

size/2],")"] ;

Write [strop,"

integer stepn, stagger "];

common /intstep/ stepn, stagger "];

integer idx,fillct,ipct,iuct,ivct "];

real h,lam,mx,my,physicalt,wx,wy,physicaltstep,iun"];

common /stepinfo/ h,lam,mx,my,physicalt,wx,wy "];

common /stepinfo/ physicaltstep, iun "];

real maxp,minp,llerr,maxperr,perr,initialenergy"];

real currentenergy, physicalnx,physicalny,rotatex,rotatey "];

common /errorinfo/ maxp,minp,11err,maxperr,perr "];

common /errorinfo/ initialenergy, currentenergy "];

real cp(O:maxind+2,0:maxind+2,0:2*maxind)"];

real cu(O:maxind+2,0:maxind+2,0:2*maxind)"];

real cv(O:maxind+2,0:maxind+2,0:2*maxind)"];

common /coef/ cp,cu,cv"];

real factterm "];

real fac(O:",degree,")"];

common fac "];

integer dx,dy,degree,iindex,jindex,kindex,csize"];

parsumeter (degree=",degree,")"];

parameter (csize=",csize,")"];

real psum,usum,vstum,mfac,mfacp,mfacu,mfacv"];

common psum,usum,vsum,mfac,mfacp,mfacu,mYacv "];

integer gridi,gridj"];

common /gridcoords/ gridi,gridj"];

integer igridi,lgridj "];

real

:maxmemi),physicaly(-maxmemj:maxmemj)"];

common /physicalxy/ physicalx,physicaly "];

integer errorsteps, ntumberofnsteps "];

integer ioffset,joffset,i,j "];

real totalperr"];

real

","O:",numberofcterms,",",-IntegerPart[csize/2],":",IntegerPart[c

common errorsteps,

numberofnsteps,ioffset,joffset,i,j,totalperr,s"];

Write[stmp," integer lengthoffillarrays,numberofp,numberofu,numberofv "];

Write[stmp," integer filli,fillj,filldx,filldy,lci,lcj,lcdx,lcdy"];

Write[stmp," integer numberoffillpts "];

Write[stmp," real lccoef,onelongarray(maxlength) "];

Write[stmp," common /fillstuff/

lengthoffillarrays,numberoffillpts,onelongarray"];

Write[stmp," real

p(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)"];

Write[stmp," real

u(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)"];

Write[stmp," real

v(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)"];

Write[stmp," common /dataongrid/ p,u,v"];

Write[stmp," real

NASA/TM-- 1999-209182

229

np(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)"];

Write[stmp," real

nu(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)"];

Write[stmp," real

nv(-maxmemi:maxmemi,-maxmemj:maxmemj,O:degree,O:degree)'°];

Write[stmp," common /dataongrid/ np,nu,nv"];

Write[stmp," integer interior(-maxmemi:maxmemi,-maxmemj:maxmemj) "];

Write[stmp," common interior "];

Close [stmp] ;

Run["sed-e 'sl\"llg'

Run ["rm comraontmp, h"] ;

-e 's/\\\\//g' commontmp.h >> common.h"];

);

makeinit condf ile := (

Print ["Removing initcond, f"] ;

Run ["rm initcond, f"] ;

Print["Generating initial condition routine initcond.f"];

Clear [p,u,v,x,y,t] ;

(*

(* *)

(* Analytical solution to hi-periodic LEE problem *)

(, .. ,)

p[x_,y_,t_]:=Cos[Sqrt[wx'2+wy^2] pi t]*Sin[wx pi (x - mx t)]*Sin[wy pi (y - my

t)];

u[x_,y_,t_] :=-(wx/Sqrt[wx'2+wy'2])*Sin[Sqrt[wx'2+wy'2] pi t]*Cos[wx pi (x - mx

t)]*Sin[wy pi (y - my t)];

v[x_,y_,t_]:=-(wy/Sqrt[wx'2+wy'2])*Sin[Sqrt[wx'2+wy-2] pi t]*Sin[wx pi (x -mx

t)]*Cos[wy pi (y - my t)];

*)

(, .. ,)

(* Analytical solution to rotated box LEE problem *)

(, .. ,)

p[x_,y_,t_] :=-Cos[Sqrt[wx'2+wy^2] Pi t] Cos[wx Pi (x- mx t)] Cos[wy Pi (y-my

t)];

u[x_,y_,t_]:=-(wx/Sqrt[wx'2+wy'2])*Sin[Sqrt[wx-2+wy'2] Pi t]*Sin[wx Pi (x - mx

t)]*Cos[wy Pi (y - my t)];

v[x_,y_,t_]:=-(wy/Sqrt[wx'2+wy'2])*Sin[Sqrt[wx-2+wy'2] Pi t]*Cos[wx Pi (x - mx

t)]*Sin[wy Pi (y - my t)];

If [Not [ValueQ [degree]] ,

degree=Input["Enter the degree"];

];

If[Not[ValueQ[maxmemi]],

maxmemi=Input["Enter the maximum x coordinate"];

maxmem]=maxmemi;

];

NASA/TM-- 1999-209182

23O

stmp=OpenWrit e [,' init condtmp • f", FormatType->FortranForm] ;

Write [strop," subroutine initcond"] ;

Write [strop," include 'common, h' "] ;

Write [strop, *'**'3 ;

Write [stmp,"c Defining physical coordinates c"] ;

Write [strop, "**'3 ;

write(iun,*) ,Rotated Box LEE Analytical Solution :'"];
Write [stmp,"

mx:=O;

my:=O;

Write [stmp,"

Write [strop ,"

Write [strop,"

Write [stmp, '°c

Write [strop,"*

Write [stmp, "c

Write [stmp, "c

Write [strop, "c

write(iun,*) 'P[X,Y ,t]= "'p[x'y't]''];

write(iun,*) 'u[x,y,t]= ,,,u[x,y,t],*] ;

write(iun,*) 'v[x,Y,t]= "'v[x'Y't]"];

do Igridi ,maxmemi ," ," ,maxmemi] ;

physicalx(igridi)= igridi * h"];

end do"] ;

do igridj ,maxmemj ,"," ,maxmemj] ;

physicaly(igrid3)= Igridj * h"] ;

end do"]"
Write [stmp, "* ' ************************* ,

Wr it e [stmp, "****************************]
• , form of time advance, do this once *c"];

Wr_te[stmp,"c* For the tensor ***************************],

Writ e [strop, "******************************

Write [stmp," do iinde x=O ," ,maxind+2] ;

Write [stmp," do j inde X=O ," ,maxind+2] ;

Write [stmp," do kind ex=O ," ,maxind*2] ; "]

• rtm " cp(iindex j index,kindex)=O'O ;
Wrltehs P,

Write[stmp," cu(iindex,jindex'kindex)=O'O "];

Writ e [stmp," cv (iindex, j index, kindex) =0.0 "],

Write[stmp," end do "];

Write[stmp," end do "];

Write[stroP," end do "] ;

Write [strop," init ialenergy =0" ''];

Do [Do[.
dnot at ion=ToString [dx] <>,,x-<>ToStr ing [dY] <>"Y",

Write[stmp,"c****** Define the initial conditions for the -,dnotation," terms

****c"]; ' m'"]"

Write[stmp," do igridj =-maxmem3'maxme] '

Write[stmp," do igri di=-maxmemi'maxmemj''];

Write[stmp," if

((interior(igridi,lgridj).eq.l).or.(interior(igridi,lgridj).eq.2)) then'*],

[[_;_;tatex(phy slcalx(Igrldl)'physicaly(lgridj)'-alpha)''];

Write[stmp,"c

physicalny=rotatey(phy sicalx(Igridi)'physicaly(Igridj)'-alpha)'']'

Write[stmp, '° physicalnx=(cos(_alpha) , physicalx(igridi)) + (sin(-alpha)

. physicaly(igridj))*'];

Write[stmp," physicalny=(_sin(_alpha) . physicalx(igridi)) +

(cos(-alpha) * physicaly(igridj))*'];

N ASA/TM-- 1999-209182

231

Write [stmp,"

" ," d- ")-",D[p[x,y,t] {x dx} {y dy}]/.{x->physicalnx,y->php(Igridi,lgridj, ,dx," , y, -

ysicalny,t->O}] ;

Write [strop,"

.... ," d- ")-" D[u[x,y t],{x,dx},{y,dy}]/.{x->physicalnx,y->phu(igridi,lgridj, ,dx, , y, - ,

ysicalny,t->O}] ;

Write [strop,"

v (lgridi, lgridj, ",dx, ", ", dy, ") =", D [v [x, y, t], {x, dx}, {y, dy}]/. {x->phys icalnx, y->ph

ysicalny,t->O}] ;

Write [stmp,"

(*

Write [stmp,"

Write [stmp,"

Write [stmp,"

*)

Write [stmp,"

Write [stmp,"

Write [stmp ,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

,{dx,O,degree}]

,{dy,O,degree}] ;

else"] ;

p(igridi,lgridj ,dx,dy)=O.O ''];

u(igridi,lgridj ,dx,dy)=O.O"] ;

v(igridi,lgridj ,dx,dy)=O.O"] ;

p(igridi,lgridj ,",dx,"," ,dy,")=O.O"] ;

u(Igridi,lgridj ,",dx,"," ,dy,")=O.O"] ;

v(igridi,lgridj ,",dx,",",dy,")=O.O"] ;

endif"] ;

end do"] ;

end do"] ;

(, *)

(*

(,
Write [stmp,"

Write [stmp,"

*)

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

(* Calculate initial energy using generalized form *)
*)

do dy=O,degree"];

do dx=O,degree"];

do dy=O,O"];

do dx=O,O"];

do Igridj=-maxmem],maxmemj"];

do igridi=-maxmemi,maxmemi"];

Write[stmp," if

((interior(igridi,lgridj).eq.l).or.(interior(igridi,lgridj).eq-2)) then"];

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write[stmp,"

Write [stmp,"

initialenergy=initialenergy+(p(Igridi,lgridj,dx,dy)**2 "];

-+u(Igridi,lgridj,dx,dy)**2"];

-+v(Igridi,lgridj,dx,dy)**2)"];

endif"];

end do"];

end do"];

Write[stmp," end do"];

Write[stmp," end do"];

Write [stmp," initialenergy=initialenergy*h*h "] ;

Write [strop," end"] ;

Close [strop] ;

Run["sed-e 's/\"//g' -e 's/\\\\//g' initcondtmp.f >> initcond.f"];

NASA/TM-- 1999-209182

232

Run["rminitcondtmp.f"];

);

makeerrorcalcdownf ile := (

Print ["Removing errorcalcdown, f"] ;

Run ["rm errorcalcdown, f"] ;

Print["Generating error calculation routine errorcalcdown.f"];

Clear [p,u, v] ;

(*

(* *)

(* Analytical solution to bi-periodic LEE problem *)

(* *)

p[x_,y_,t_j:=Cos[Sqrt[wx'2+wy_2] pi t]*Sin[wx pi (x - mx t)J*Sin[wy pi (y - my

t)];
u [x_, y_, t_] :=-(wx/Sqrt [wx'2+wy "2])*Sin [Sqrt [wx" 2+wy'2] pi t] *Cos [wx pi (x - mx

t)J*Sin[wy pi (y - my t)];

v [x_, y_, t_] :=- (wy/Sqrt [wx'2+wy'2])*Sin [Sqrt [wx-2+wy-2] pit] *Sin [wx pi (x - mx

t)]*Cos[wy pi (y - my t)];

*)

(* *)
(* Analytical solution to rotated box LEE problem *)

(* *)

p[x_,y_,t_] :=-Cos[Sqrt[wx'2+wy^2] Pi t] Cos[wx Pi (x- mx t)] Cos[wy Pi (y-my

t)];

u[x_,y_,t_]:=-(wx/Sqrt[wx-2+wy'2])*Sin[Sqrt[wx-2+wy'2] Pi t]*Sin[wx Pi (x - mx

t)]*Cos[wy Pi (y - my t)];

v[x_,y_,t_]:=-(wy/Sqrt[wx'2+wy-2])*Sin[Sqrt[wx-2+wy'2] Pi t]*Cos[wx Pi (x -mx

t)]*Sin[wy Pi (y - my t)];

stmp=OpenWrite["errorcalctmp.f",FormatType->FortranForm];

Write[stmp," subroutine errorcalcdown"];

Write[stmp,"

(*

Write[stmp,"

Write[stmp,"

*)

include 'common.h'"];

real rotatex"];

real rotatey"] ;

Write [stmp

Write [stmp

Write [strop

Write [strop

Write [strop

Write [strop

Write [strop

Write [stmp

Write [stmp

integer bigi,bigj "];

real eratio "];

totalperr=O.O "];

maxperr=O.O "];

maxp=O.O "];

minp=O.O "];

currentenergy=O.O"];

do lgridj=-maxmemj,maxmemj"];

do lgridi=-maxmemi,maxmemi"];

NASA/TM--1999-209182

233

Write[stmp," if

((interior(igridi,lgridj).eq.l).or.(interior(igridi,lgridj).eq.2)) then"];

Write[stmp,"c

physicalnx=rotatex(physicalx(Igridi),physicaly(igridj),-alpha) "];

Write[stmp,"¢

physicalny=rotatey(physicalx(Igridi),physicaly(igridj),-alpha) "];

Write[stmp," physicalnx=(cos(-alpha) * physicalx(igridi)) + (sin(-alpha)

physicaly(igridj))"];

Write[stmp," physicalny=(-sin(-alpha) * physicalx(igridi)) +

(cos(-alpha) * physicaly(igridj))"];

Write[stmp," if (p(igridi,lgridj,O,O).gt.maxp)

maxp=p(igridi,lgridj,O,O)"];

Write[stmp," if (p(igridi,lgridj,O,O).It.minp)

minp=p(igridi,lgridj,O,O)"];

Write[stmp,"

perr=abs(_(_gridi__gridj____)-____[x_y__]/.{x->_hysica_nx_y->_hysica_ny_t->_hysic

alt},")"] ;

Write [strop,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write [strop,"

(*

Write [stmp,"

Write [stmp,"

*)

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

if (perr.gt.maxperr) then "];

bigi=igridi "];

bigj=igridj "];

maxperr:perr "];

endif "];

totalperr=totalperr+perr"];

do dy=O,degree "];

do dx=O,degree "];

do dy=O,O "];

do dx=O,O "];

currentenergy=currentenergy+(p(igridi,lgridj,dx,dy)**2 "];

-+u(igridi,lgridj,dx,dy)**2"];

-+v(Igridi,lgridj,dx,dy)**2)"];

end do"];

end do"];

Writ e [strop," endif"] ;

Write[strop," end do"];

Write[strop," end do"];

Write [stmp," 1 lerr=totalperr*h*h "] ;

Write[stmp, " eratio = currentenergy*h*h/initialenergy "];

Writ e [strop,

" write(*,900) stepn+l, physicalt, maxperr, llerr, maxp, minp,eratio"];

Write[strop," write(6,*) bigi,bigj "] ;

Write [strop,

NASA/TM-- 1999-209182

234

" write(iun,900) stepn+l, physicalt, maxperr, llerr, maxp, minp,eratio"];

Write[stmp," 900 format(Ix,i5,1x,lp,4dl2.B,Ix,2dl2.5)"];

Write [strop," end"] ;

Close [strop] ;

Run["sed -e 's/\"//g' -e 's/\\\\//g' errorcalctmp.f >> errorcalcdown.f"];

Run ["rm errorcalctmp, f"] ;

);

makeerrorcalcupf ile := (

Print ["Removing errorcalcup, f"] ;

Run["rm errorcalcup.f"] ;

Print["Generating error calculation routine errorcalcup.f"] ;

Clear[p,u,v];

(*

(* ,)

(* Analytical solution to bi-periodic LEE problem *)

(* ,)

p[x_,y_,t_] :=Cos[Sqrt[wx'2+wy_2] pi t]*Sin[wx pi (x -mx t)]*Sin[wy pi (y - my
t)];

u[x_,y_,t_]:=-(wx/Sqrt[wx_2+wy_2]),Sin[Sqrt[wx_2+wy_2] pi t]*Cos[wx pi (x -mx

t)]*Sin[wy pi (y - my t)];

v[x_,y_,t_]:=-(wy/Sqrt[wx^2+wy-2]),Sin[Sqrt[wx-2+wy-2] pi t]*Sin[wx pi (x - mx

t)]*Cos[wy pi (y - my t)];

*)

(* ,)

(* Analytical solution to rotated box LEE problem *)

(* ,)

p[x_,y_,t_] :=-Cos[Sqrt[wx_2+wy_2] Pi t] Cos[wx Pi (x- mx t)] Cos[wy Pi (y-my

t)];

u [x_, y_, t_] :=- (wx/Sqrt [wx'2+wy'2])*Sin [Sqrt [wx'2+wy'2] Pi t] *Sin [wx Pi (x - mx

t)]*Cos[wy Pi (y - my t)];

v [x_, y_, t_] :=- (wy/Sqrt [wx'2+wy'2]),Sin [Sqrt [wx'2+wy'2] Pi t] *Cos [wx Pi (x -mx

t)]*Sin[wy Pi (y - my t)];

stmp=0penWrite["errorcalctmp.f",FormatType->FortranForm];

Write[stmp," subroutine errorcalcup"];

Write[stmp," include 'common.h'"];

(*

Write[stmp,"

Write[stmp,"

*)

real rotatex"];

real rotatey"];

Write [strop,"

Write [stmp,"

Write [stmp,"

Writ e [strop,"

integer bigi,bigj "];

real eratio "];

totalperr=O.O "];

maxperr=O.O "];

NASA/TM--1999-209182

235

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

maxp=O.O "];

minp=O.O "];

currentenergy=O.O"];

do lgridj=-maxmemj+stagger,maxmemj+stagger"];

do lgridi=-maxmemi+stagger,maxmemi+stagger"];

Write[stmp," if

((interior(lgridi,lgridj).eq.1).or.(interior(lgridi,lgridj).eq.2)) then"];

Write[stmp,"c

physicalnx=rotatex(physicalx(lgridi),physicaly(lgridj),-alpha) "];

Write[stmp,"c

physicalny=rotatey(physicalx(lgridi),physicaly(lgridj),-alpha) "];

Write[stmp," physicalnx=(cos(-alpha) * physicalx(lgridi)) + (sin(-alpha)

physicaly(lgridj))"];

Write[stmp," physicalny=(-sin(-alpha) * physicalx(lgridi)) +

(cos(-alpha) * physicaly(lgridj))"];

Write[stmp," if (np(Igridi,lgridj,O,O).gt.maxp)

maxp=np(igridi,lgridj,O,O)"];

Write[stmp," if (np(igridi,lgridj,O,O).it.minp)

minp=np(igridi,lgridj,O,O)"];

Write[stmp,"

perr=abs(np(Igridi,lgridj,O,O)-",p[x,y,t]/.{x->physicalnx,y->physicalny,t->phy si

calf},")"]

Write[stmp "

Write[stmp "

Write[stmp "

Write[stmp "

Write[stmp "

Write[stmp,"

(*

Write[stmp,"

Write[stmp,"

*)

Write[stmp,"

Write[stmp,"

Write[stmp,"

Write[stmp,"

Write[stmp,"

Write[stmp,"

Write[stmp,"

if (perr.gt.maxperr) then "];

bigi=Igridi "];

bigj=igridj "1;

maxperr=perr "1;

endif "];

totalperr=totalperr+perr"];

do dy=O,degree"];

do dx=O,degree"];

do dy=O,O"];

do dx=O,O"];

currentenergy=currentenergy+(np(igridi,lgridj,dx,dy)**2 "];

-+nu(lgridi,lgrid],dx,dy)**2"];

-+nv(lgridi,lgridj,dx,dy)**2)"];

end do"];

end do"];

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [strop, '°

Write [stmp,"

Write

Write [stmp,"

endif"];

end do"];

end do"];

llerr=totalperr.h.h "];

eratio = currentenergy*h*h/initialenergy "];

[stmp,

write(*,900) stepn, physicalt, maxperr, llerr, maxp, minp,eratio"];

write(6,*) bigi,bigj "1 ;

NASA/TM--1999-209182

236

Write [strop, , ,
wxite(iun,900) stepn, physicalt, maxperr, llerr, maxp, minp eratio"]'

Write[stmp," 900 format(lx,i5,1x,lp,4d12.S,lx,2d12"5)"];

Write[stmp," end"];

Close[stmp];

Kun["sed -e 's/\"//g' -e 's/\k\\//g'

Kun["rm errorcalctmp.f"];

errorcalctmp.f >> errorcalcup.f"];

);

makemainfile:=(

Print["Kemoving main.f"];

Run["rm main.f"];

Print["Generating main execution routine main.f"];

if[Not[ValueQ[maxmemi]],

maxmemi=Input["Enter the maximum memory grid size in one dimension"];

maxmem]=maxmemi];

stmp=OpenWrite[-maintmp.f",FormatTyp e->F°rtranF°rm];

Write[stmp," program main "];

Write[stmp," include _common.h'"];

Write[stmp,"c**** Enter problem parameters *****c"];

Write[stmp," write(6,*) 'Enter the number of i grid cells per unit

interval' "];

Write [stmp,"

Write [stmp ,"

Write[stmp,"

Write [strop ,"

Write [strop,"

Write [stmp ,"c

Write [stmp ,"c

Write [stmp ,"

Write [stmp,"

Write [strop ,"

Write [strop,"

Wrlte [strop,

Write [strop ,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write[strop,"

Write [strop,"

Write[stmp,"

read(5,*) iun"];

if (iun+,,,csize,".gt.maxmemi) then "];

write(6,*) 'Need to allocate more memory ' "];

stop "];

endif"];

maxi=maxmemi-2"];

maxj=maxmem3-2"];

h=l.O/dble(iun)"];

write(6,*) ,Enter lambda' "];

read(5,*) lam"];

physicaltstep=lam/dble(iun) "];

write(6,*) 'Enter # of time steps ' "];

read(5,*) numbero_nsteps "];

write(6,*) 'Enter # of time steps between error output ' "];

read(5,*) errorsteps "];

if (mod(csize,2).eq-O) then "];

i_ (mod(errorsteps+l,2).eq.O) then "];

write(*,*) ,Staggered grid requires even errorsteps' "];

errorsteps=errorsteps+l "];

write(*,*) ,Changed it to :,,errorsteps "];

N ASA/TM-- 1999-20918,2

243

Write [stmp,"c* Loop through all the derivatives of ",varlist [[ct]] ," *c"] ;

Write[stmp,"c* At a single location *c"];

Write [stmp, *** ;

Write[strop," do filldy=O, degree "];

Write[strop " do filldx=O, degree "];

Write [stmp " numberofp=onelongarray(idx) "] ;

Write[stmp " idx=idx+l ''];

Write [stmp " numberofu=onelongarray(idx) "] ;

Write[strop " idx=idx +I''];

Write [stmp " numberofv=onelongarray(idx) "] ;

Write [stmp," idx=idx+l "] ;

Write [strop," psum=O. 0"] ,

Write[strop," do ipct=l,numberofp "] ;

Write[stmp," ici = onelongarray(idx) "];

Writ e [stmp," idx=idx+ 1 "] ;

Write[stmp," icj = onelongarray(idx) "];

Write [stmp," idx=idx+1 ''];

Write[stmp," Icdx = onelongarray(idx) "] ;

Write [stmp," idx=idx+l ''];

Write[stmp," icdy = onelongarray(idx) "] ;

Writ e [stmp," idx=idx+ 1 "] ;

Write[stmp," iccoef = onelongarray(idx) "];

Write[stmp," idx=idx+1 ''] ;

Write [stmp," psum=psum+ (iccoef*pp(Ici, Ic3, icdx, Icdy))"] ;

Write[stmp," if ((filli.eq.4).and.(fillj.eq.-2)) then "] ;

Write[stmp," write(6,*)

'np' ,iccoef,lci,lc3 ,icdx,lcdy,np(Ici,lcj ,icdx,lcdy)"] ;

Write [stmp," endif"] ;

Write[strop," end do "] ;

Write [stmp," usum=O. 0"] ;

Write[strop," do iuct=l,numberofu "];

Write[stmp," ici = onelongarray(idx) "];

Write [stmp," idx=idx+1"] ;

Write[stmp," Icj = onelongarray(idx) "];

Write [stmp," idx=idx+l ''];

Write[stmp," Icdx = onelongarray(idx) "];

Write [strop," idx=idx+l ''];

Write[stmp," icdy = onelongarray(idx) "] ;

Write [stmp," idx = idx+ I "] ;

Write[stmp," iccoef = onelongarray(idx) "];

Write [stmp," dx=idx+l ''] ;

Write [stmp ," usum=usum+ (Iccoef*uu(Ici, Icj, icdx, Icdy)) "] ;

Write[stmp," if ((filli.eq.4).and.(fillj.eq.-2)) then "] ;

Writ e [stmp," write (6, *)

'nu',iccoef,lci,lcj,lcdx,lcdy,nu(ici,lc3,1cdx,lcdy)"] ;

Write [stmp," endif "] ;

Write[strop," end do "3;

Write [stmp," vsum=O. 0"] ;

Write[stmp," do ivct=1,numberofv "] ;

Write[stmp," ici = onelongarray(idx) "] ;

Write [strop ," idx=idx +I''] ;

NASAJTM-- 1999-209182

244

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Icj = onelongarray(idx)"];

idx=idx+l"];

icdx = onelongarray(idx)"];

idx=idx+l"];

icdy = onelongarray(idx) "];

idx=idx+l"];

Iccoef = onelongarray(idx)"3;

idx=idx+l"3;

vsum=vsum+(iccoef*vv(ici,lcj,lcdx,lcdy))"];

if ((filli.eq.4).and.(fillj.eq.-2)) then "];

Write [stmp ," write (6, *)

'nv' ,iccoef,lci,lcj ,icdx,lcdy,nv(ici,lcj ,icdx,lcdy)"] ;

Wr it e [stmp ," endif "] ;

Write[strop," end do "] ;

Write[strop," ,, ;

", varl i st [[ct]] ,"(f ill\, f illj, _ illdx, f illdy)=psum+usum+vsum !] .

Write[stmp," if ((filli.eq.4).and.(fillj'eq'-2)) then ,

Wr it e [stmp," _r it e (6, *) 'as signing

' ,f ill\, f ii13, f illdx, f illdy, psum, usum, v sum"] ;

Writ e [s smp," endif "] ;

Write[stmp," end do "] ;

Write[strop," end do "] ;

,{ct, I, Length [v arl i s t] }] ;

Write[strop," end do "3;

Write [stmp," end"] ;

Close[stmp];

Run["sed -e 's/\"//g' -e 's/\k\k//g' -e ,s/fillfills/fillfillsdowll/g' -e

's/pp/ p/g' -e 's/uu/ u/g' -e 's/w/ v/g' fillfillstmp.f >> fillfillsdown.f"];

Kun["sed -e 's/k"//g ' -e 's/ki\k//g' -e ,s/fillfills/fillfillsup/g' -e 's/pp/

np/g' -e 's/uu/ nu/g' -e 's/w/ nv/g' fillfillstmp.f >> fillfillsup.f"];

Run["rm fillfillstmp.f"];

);

maker eadf illsf ile := (

(*
If [Not [ValueQ [maxlength3] ,

maxlength=input[,'Enter the maximum length of fillarray: "];

3;

,)
Print ["Removing rsadfills.f"] ;

Run["rm readfills.f"];

Print["Generating read the fill points definition array routine readfills.f"] ;

stmp=OpenWrit e ["read_ illstmp •f", FormatType->FortranForm] ;

• _s.] .
Write [stmp," subroutine readf 111 J,

Write[strop," include 'common.h'"] ;

NASA/TM--1999-2091 _2

23.(.)

(, *)

(* Odd stencils need fill done on each time step, top and bottom *)

(, *)
If [OddQ [csize] ,

Write [strop,"

];

Write [strop,"

If [EvenQ [csize] ,

Write [strop,"

];

call fillfillsup"]

if (mod(stepn,errorsteps).eq.O) call errorcalcup"];

stagger=O "];

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

physicalt=physicalt+physicaltstep "3;

do grid3=-maxmemj+2,maxmemj-2"];

do gridi=-maxmemi+2,maxmemi-2"];

call tensordown "];

call timeadvancedown "];

Write[stmp,"

Write[stmp,"

Write [stmp, "c

Write [stmp,"

Write [stmp,"

Write [strop ,"

end do"];

end do"];

call periodicexdown "];

call fillfillsdown "];

if (mod(stepn+1,errorsteps).eq.0) call errorcalcdown"];

end do"];

Write [stmp," end"] ;

Close [stmp] ;

Run["sed -e 'S/\"//g' -e

Run["rm maintmp.f"];

's/\\\\//g' maintmp.f >> main.f"];

);

makeperiodicexfile:=(

Print["Removing periodicex.f"];

Run["rm periodicexdown.f"];

Run["rm periodicexup.f"];

Print["Generating periodic boundary exchange routine periodicex.f"];

If [Not [ValueQ [csize]] ,

csize=Input["Enter a stencil size"];

];

If[Not[ValueO[degree]],

degree=Input["Enter the degree"];

NASA/TM--1999-209182

240

];

stmp=OpenWrite [,,periodicextmp- f" ,FormatType->FortranForm] ;

Write [stmp," subroutine periodicex"] ;

Writ e [stmp," include 'common, h' "] ;

Write[stmp,"c***** Exchange Kight and Left *****************"] ;

varlist={"p", "u" ,"v"} ;

Do[

thevar=varlist [[ct]] ;

(*

Do [Do [

*) Strin [dx]<>-x"<>ToString[dy] <>"Y" ;
dnot at ion=T o g

do dy=O,degree"] ;
Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [stmp, '°

Write [stmp,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

WriteEstmp,"

Write[strop,"

Write [strop,"

(*

,{dr, 0, degree}]

,{dy, 0 ,degree}] ;

,{ct,"..,3}] ;

do dx=O,deg ree''] ;
. ,, IntegerPart [csize/2]] "do 1off set=O, ,

do igridj=-maxj +I ,maxj"] ;

,',thevar," (-maxi-ioffset, igridj, dx,dy)="] ;

, ,',thevar,"(maxi-ioffset,lgridj,dx,dy) "];

end do"] ;

end do"] ;

do ioffset =O ," ,IntegerPart [¢size/2]] ,
• . " tl °

do igrid3=-max3 +I 'max3] '

',,thevar ," (maxi+ l+iof fset ,igridj ,dx ,dy) =''];

, .,thevar,-(l-maxi+ioffset,lgridj ,dx,dy)"] ;

end do"] ;

end do"] ;

end do"] ;

end do"] ;

Write [stmp,"c***** Exchange Top and Bottom *****************"] ;

Do[
thevar=varlist [[ct]] ;

(*
Do [Do [

dnot at ion=ToString [dx] <>,,x,,<>ToSt ring[dy] <>"Y" ;

Write [stmp ," do dy=O ,degree"] ;

Write [strop,"

Writ e [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

e _!do dx:O,degre];

do joffset=O, '',IntegerPart[csize/2]];

lgrldl maxl+1,max1"]"do " '=- " " '

,,,thevar,"(igridi,-maxj-j °ffset'dx'dy)=''];

-,thevar,"(Igridi, maxj-joffset,dx,dy) "1;

end do"I;

N AS A/TM_ 1999-209182

241

Write [stmp,"

Write [strop,"

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [strop,"

(*

,{dx,O,degree}]

,{dy,O,degree}] ;

*)

Write [strop,"

Writ e [strop ,"

,{ct,t,S}];

end do"] ;

do jo_fset=O, '',IntegerPart[csize/2]] ;

do igridi =-maxi+l ,maxi"] ;

", thevar," (igr idi, maxj + I+] offset, dx, dy)= "1 ;

" ,thevar,"(igridi, l-maxj+joffset,dx,dy)"] ;

end do"] ;

end do"] ;

end do"] ;

end do"] ;

Write [stmp,"c***** Exchange Corners *****************"3 ;

Do[
thevar=varl ist [[ct]] ;

(*
Do [Do [

*)
divotat ion=ToS tr ing [dx] <> "x" <>ToSt ring [dy] <>"y" ;

Write[stmp," do dy=O,degree"];

Write[stmp," do dx=O,degree"];

Write[stmp,"c****** Top Right ***********c "];

Write [stmp,"

Write [strop,"

Write[stmp,"

Write [strop," *

Write [strop ,"

Write [stmp,"

Write[stmp,"c****** Top Left ***********c "];

Write [stmp," do joffse t=O ," ,IntegerPart [csize/2]] ;

Write[stmp," do ioffset =O,'',IntegerPart[csize/2]];

Write[stmp," " ,thevar,"(-maxi-ioffset,maxj+l+J°ffset'dx'dy) =''];

Write[stmp," , " ,thevar,"(maxi_ioffset,l-maxj+3offset,dx,dy)"] ;

Write[strop," end do"] ;

Write[stmp," end do"] ;

Write[stmp,"c****** Bottom Right ***********c "3;

Write[strop," do joffset=O,",IntegerPart[csize/2]];

Write [strop," do ioffset=O ,", IntegerPart [csize/2]] ;

Write [stmp," ",thevar ," (maxi+ l+ioffset,-max j-3 off set, dx ,dy)="] ;

Write[stmp," , ,,,thevar,"(1-maxi+ioffset, maxj-joffset,dx,dy)"];

Write[strop," end do"] ;

Write[strop," end do"] ;

Write[stmp,"c****** Bottom Left ***********c "];

Wmite[stmp," do joffset=O,",IntegerPart[csize/2]];

Write [stmp," do ioffset=O,", IntegerPart [csize/2]] ;

Write [stmp," ", thevar ,"(-maxi-ioff set ,-maxj-j off set ,dx, dy)="] ;

Write[stmp," , ",thevar,"(maxi-ioffset, maxj-joffset,dx,dy)"] ;

Write[stmp," end do"] ;

do jof:_set=O ,", IntegerPart [csize/2]] ;

do iofTse t=O,'' ,IntegerPart [csize/2]] ;

" ,thevar," (maxi+i+ioff set ,maxj+l+joffset ,dx ,dy)="] ;

,, thevar,,,(l-maxi+ioffset,l-maxj+joffset,dx,dy) "] ;

end do"] ;

end do"] ;

NASA/TM-- 1999-209182

242

Write [strop," end do"] ;

(*

,{dx, O, degree}]

,{dy ,0 ,degree}] ;

*)

Write[stmp," end do"] ;

Write[strop," end do"];

,{ct,I,3}];

Write [stmp," end"] ;

Close [stmp] ;

Run["sed -e 's/\"//g' -e 's/\\\\//g' -e 's/periodicex/periodicexdown/g'

periodicextmp.f >> periodicexdown.f"];

Run["sed -e 's/V'//g' -e 's/kh\k//g' -e 's/periodicex/periodicexup/g' -e

p/ np/g' -e 's/ u/ nu/g' -e 's/ v/ nv/g' periodicextmp.f >>

periodicexup.f"];

Run["rm periodicextmp.f"];

);

(* *)

's/

(* This makes the routine that fills in the fills at each time step. *)

(* Note that Hermitian schemes only fill on the bottom as the staggered *)

(* step will have the information it needs *)

(* *)
makefillfillsfile:=(

Print["Removing fillfills.f"];

Run["rm fillfillsdown.f"];

Run["rm fillfillsup.f"];

Print["Generating fill the fill points routine fillfills.f"];

stmp=OpenWrite["fillfillstmp.f",FormatType->FortranForm];

Write [stmp,"

Write [stmp,"

subroutine fillfills"];

include 'common.h'"];

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Do[

varlist={"pp","uu","vv"};

Write[stmp,"c**c"];

Write[stmp,"c* Loop through all fill locations in correct order *c"];

Write[sZmp,"c**c"3;

idx=1 "];

do fillet=l, numberoffillpts "];

filli = onelongarray(idx)"];

idx=idx+1"];

fill] = onelongarray(idx)"];

idx=idx+1"];

NASA/TM--1999-209182

237

Write [strop,"

Write [strop,"

endif "] ;

endif "] ;

Write [strop,"

Write [stmp,"

Write [strop,"

Write [strop,"

write(6,*) 'Enter wave number for wx :'"];

read(5,*) wx "];

write(6,*) 'Enter wave number for wy :'"];

read(5,*) wy "];

Write [strop," stagger=O"] ;

Write [stmp," physicalt=O. 0"] ;

Write [stmp," mx=O. 0"] ;

Write [stmp," my=O. 0"] ;

realsizeinbytes=8;

memcost= (4*iun + 24.(I + degree)_2*iun'2 +

csize*(l + degree)*(l + numberofcterms) +

3*(2 + csize + csize*degree)'2*(-I + 2*csize*(l + degree)))*realsizeinbytes;

(*

tffloatcost= (iun+iun+1)'2 3 * (-I + csize + degree*csize)'2*(-1 + 2.(I +

degree)*csize);

m=csize(degree+l)-l;

cefloatcost= (iun+iun+1)^2 3 * 10.(I + degree)A2*csize_2*(-1 + csize +

degree*csize)+(3*2 m (degree+l)'2);

flocost=cefloatcost+tffloatcost;

*)

flocostperstep=(iun+ium+1)'2*(3*(-1 + csize + degree*csize)_2*(-1 + 2.(I +

degree)*csize) + (I + degree)^2*(5*csize_2*(-I + csize + degree*csize) + 3*(-3

+ 4.(I + degree)*csize)));

totalflocost=flocostperstep*numberofnsteps;

Write [stmp,"

,.,];

Write [stmp,"

Write [stmp,"

Write[stmp,"

',mx"] ;

Write [strop,"

',my"] ;

Write [strop,"

Write [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [stmp,"

write(*,*)

write(*,*)

write(*,*)

write(*,*)

write(*,*)

write(*,*)

write(*,*)

write(*,*)

wrzte(*,*)

write(*,*)

wrzte(*,*)

:',",flocostperstep]

Write[stmp," wrzte(*,*)

:',",totalflocost];

'2D LEE Constant Coefficient Rotated Box Problem

'Algorithm :c",csize,"d",degree,'];

'Grid Points Per Wavelength = ',2*iun "];

'Mx Convection Velocity (Nondimensionalized) :

'My Convection Velocity (Nondimensionalized) :

'Wx Wave Number : ',wx"];

'Wy Wave Number : ',wy"];

'Lambda dt/dx : ',lam"];

'Number of time steps : ',numberofnsteps"];

'Memory Cost is (in Bytes):',",memcost];

'Floating Point Cost Per Time Step is

'Total Floating Point Cost Counting all steps is

Write [stmp,"

Problem '"] ;

Writ e [strop,"

write(iun,*) '2D LEE Constant Coefficient Biperiodic B.C.

write(iun,*) 'Algorithm :c",csize,"d",degree,'];

N ASA/TM--1999-209182

238

Write [strop,"

Write [strop,"

',mx"1 ;

Write [strop,"

',my"] ;

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop ,"

Write [strop,"

write (iun ,*)

write(iun,*)

write(iun,*)

write(iun,*)

write(iun,*)

write(iun,*)

write(iun,*)

write(iun,*) 'Memory Cost is (Bytes):'

,Grid Points Per Wavelength = ,,2*iun "];

'Mx Convection Velocity (Nondimensionalized) :

'My Convection Velocity (Nondimensionalized) :

'Wx Wave Number : ',wX"];

'Wy Wave Number : ',wy"];

'Lambda dt/dx : ',lam"];

'Number of time steps : , numberofnsteps"],
-,memcost];

Write[s_mp," write(iun,*) ,Floating Point Cost Per Time Step is

:,,- flocostperstep];
WriZe[stmp," write(iun,*) 'Total Floating Point Cost Counting all steps is

:, ,,,totalflocost];

Write[stmp," call readfills "],

Write [strop,"

Write [strop,"

Write [strop ,"

Write [strop,"

Write [strop,"

Write [stmp ,"

,,, n t

- plunin

Write [strop,"

Write [strop,"

Write [strop ,"

,,, _ t

,, phmin

Wr ire [strop,"

Wrlte[stmp, c

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop ,"

I_ [EvenQ [csize] ,

Write [strop,"

];

tm "Writers P,

Write [strop,"

call definephysicalxy "];

call determinefills "];

call initcond "];

call computefactorials "1;

write(*,*) ' ' ''];

write(, _)",

maxperr llperr

energy'"];

write(*,*) 1;

wri%e(iun,*) 1;

write(iun,*) ",

maxperr llperr

energy'"];

write(iun,*) ' ' "1;

phmax",

phmax",

call periodicexdown "];

stepn=-l"];

call errorcalcdown "];

do stepn=l, number°_nstePs'2 "];

physicalt=physicalt+physicaltstep "];

stagger=1 "];

do gridj =-maxmemj+2'maxmemj-2''1;

do gridi =-maxmemi+2'maxmemi-2''];

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop,"

Write [strop, "c

call tensorup "];

call timeadvanceup "];

end do"1;

end do"];

call periodicexup "];

N ASA/TM-- 1999-2091 _2

245

Write [stmp," open(file= 'fillarrays ',unit=3)"] ;

Write [stmp, "c***

******"] ;

Write[stmp,"c* Read in the fill solutions from the mathematica output of file"];

Write [stmp, "c* computefillarrays"] ;

Write [stmp, "**

******"] ;

Write[stmp,"c***c"];

Write[stmp,"c* The first element of fillarrays is the # of elements *c"];

Write[stmp,"c* The second is the # of fill point locations *c"];

Write[stmp,"c***c"];

Write[stmp," read(3,*) lengthoffillarrays "];

Write[stmp," read(3,*) numberoffillpts "];

," write(6,*) 'Number of fill points is ',numberoffillpts "];

," if (lengthoffillarrays.lt.maxlength) then "];

,"c* The minus one is because the second number in fillarrays

Write[strop

Write [stmp

Write [strop

c"] ;

Write [stmp

*c"] ;

Write[stmp,"c* is the number of fill points

*c"] ;

Write [strop

c"];

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [strop,"

Write [stmp,"

Write [stmp ,"

',lengthoffillarrays+l "];

Write[strop," stop "] ;

Write [stmp," endif"] ;

Write[stmp," close(3)"] ;

Write [stmp," end"] ;

do i=l,lengthoffillarrays-l"];

read(3,*) onelongarray(i)"];

end do "];

else "];

write(6,*) 'The fillarrays file is too large ' "];

write(6,*) 'Increase maxlength from ',maxlength,' to

Close[stmp];

Run["sed -e 's/\"//g' -e 's/k\\\//g'

Run["rm readfillstmp.f"];

readfillstmp.f >> readfills.f"];

);

makedeterminefillsfile:=(

Print["Removing determinefills.f"];

Run["rm determinefills.f"];

Print["Generating determine fill points routine determinefills.f"];

stmp=OpenWrite["determinefillstmp.f",FormatType->FortranForm];

NASA/TM-- 1999-209182

240

Write [strop,"

Write [stmp,"

subroutine determinefills"];

include 'common.h'"];

Write[stmp,"c****"];

Write[stmp,"c*Determine which points are interior, fillin, and nothing"];

Write[stmp,"c* Note that boundary points are nothing, not used since assumed

0"];

Write[stmp,"¢* 0 = boundary , I = interior, 2 = fillin needed, 3 = fillin

not needed"];

Write[stmp,"c****"];

Write[stmp," do Igridi=-maxmemi,maxmemi"];

Write[stmp," do igridj=-maxmemj,maxmemj"];

Write[stmp,"c

physicalnx=rotatex(physicalx(igridi),physicaly(igridj),-alpha) "];

Write[stmp,"c

physicalny=rotatey(physicalx(Igridi),physicaly(Igridj),-alpha) "];

Write[stmp," physicalnx=(cos(-alpha) * physicalx(igridi)) + (sin(-alpha)

physicaly(igridj))"];

Write[stmp," physicalny=(-sin(-alpha) * physicalx(Igridi)) +

(cos(-alpha) * physicaly(igridj))"];

Write[stmp,"c* interior (not fillin though)"];

Write[stmp," if

((_hysica_nx_gt.-_).and.(_hysica_nx._t._).and.(physica_ny.gt.-_).and_(_hysica_ny

.it.l)) then"];

Write[stmp," interior(igridi,lgridj)=l "];

Write[stmp," else"];

Write[stmp,"c* outside of rotated box or on boundary"];

Write[stmp," interior(igridi,lgridj)=O"];

Write[stmp," endif"];

Write[strop," end do"];

Write[stmp," end do"] ;

Write[stmp,"c****"];

Write[stmp,"c* now determine the interior points which need filled in"];

Write[stmp,"c* Note that this will work for the hermitain c3ons2 algorithms

too."];

Write[stmp,"c****"];

Write[stmp,"c* Do not need to compute outer most square of points, they are 0"];

Write [strop,"

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [strop, "

Write [stmp,"

Write [stmp,"

Write [stmp,"

do igridi=-maxmemi+l,maxmemi-l"];

do igrid3=-maxmemj+1,maxmemj-1"];

if (interior(igridi,lgridj).eq.1) then "];

interior(igridi,lgridj)=2"];

if ((interior(igridi-1, igrid3).ne.0).and."];

(interior(igridi+1, igridj).ne.O).and."];

(interior(Igridi-1,1gridj+l).ne.O).and."];

(interior(Igridi+l,lgridj+l).ne.O).and."];

NASA/TM--1999-209182

247

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

[stmp

[stmp

[stmp

[stmp

[stmp

[strop

[stmp

[strop

[stmp

9 II

9 '1

9 '1

9 'u

9 '1

9'1

)OI

[strop

[strop

[stmp," "];

[stmp,"

[strop,"

[stmp ,"

[stmp,"

[stmp,"

[stmp,"

[stmp,"

[stmp,"

[strop,"

[stmp,"

[stmp,"

[stmp,"

[stmp,"

(interior(igridi-l,lgridj-l).ne.O).and."];

(interior(Igridi+1,1gridj-1).ne.O).and."];

(interior(Igridi ,Igrid3+1).ne.O).and."];

(interior(Igridi ,igridj-1).ne.O)) then"];

interior(igridi,lgridj)=l "];

endif"];

endif"];

end do"];

end do"];

,"c* Now determine which fill ins are not used or needed"];

,"c* they are not next to an interior point"];

do igridi=-maxmemi+l,maxmemi-l"];

do Igridj=-maxmemj+1,maxmemj-1"];

if ((interior(igridi,lgridj).eq.2).and."];

- (interior(igridi-l, igridj).ne.1).and."];

- (interior(igridi+l, Igridj).ne.l).and."];

- (interior(igridi-l,lgridj+l).ne.l).and."];

- (interior(Igridi+_,Igridj+l).ne.l).and."];

- (interior(igridi-i,lgridj-l).ne.l).and."];

- (interior(igridi+i,lgridj-l).ne.1).and."];

- (interior(igridi ,igrid]+l).ne.l).and."];

- (interior(Igridi, Igridj-l).ne.l)) then"];

interior(Igridi,lgridj)=3"];

endif"];

[strop," end do"] ;

[stmp," end do"];

Write [stmp,"

Write [stmp,"

Write [stmp,"

Write [stmp ,"

Write [stmp, "

Write [stmp,"

Write [strop, °'

write(4,*) maxmemi "];

write(4,*) iun "];

do Igridi=-maxmemi,maxmemi "];

do igridj = maxmemj,-maxmemj,-l"];

write(4,*) interior(Igridi,lgridj)"];

end do"];

end do"];

Write[stmp," end"];

Close[stmp];

Run["sed -e 's/\"//g' -e 's/k\\\//g'

determinefills.f"];

Run["rm determinefillstmp.f"];

determinefillstmp.f >>

NASAFFM--1999-209182

248

);

makerotatef ile := (

Print ["Removing rotate, f"] ;

Run["rm rotate._"] ;

Print [,,Generating rotate routine rotate._"] ;

stmp=OpenWrite ["rot at etmp. f", FormatType->FortranForm] ;

Write [stmp," real funct ion rotat ex (xcoord, ycoord, lalpha) "] ;

Write [stmp," real xcoord, ycoord, lalpha, newalpha"] ;

Writ e [strop,""] ;

Write[stmp,"c* Rotation in MMA is backwards"];

Write [stmp," newalpha=lalpha"] ;

Write[stmp," rotatex:(cos(newalpha) * xcoord) + (sin(newalpha) *

ycoord) "] ;

Write [strop ,""] ;

Write [strop," end"] ;

Write [strop, ""] ;

Wr it e Istmp," real Tunct ion rot at ey (x coord, y coord, ialpha) "] ;

Writ e [stmp," real xcoord, ycoord, lalpha ,newalpha"] ;

Write[stroP,""] ;

Write[stmp,"c* Rotation in MMA is backwards"];

Write [stmp," newalpha=lalpha"] ;

Write[stmp," rotatey=(-sin(newalpha) * xcoord) + (cos(newalpha) *

ycoord) "] ;

Write [stmp, ""] ;

Write [strop," end"] ;

Close [stmp] ;

Run["sed -e 'sl\"llg'

Run["rm rotatetmp.f"] ;

);

-e 's/\\\\//g' rotatetmp- f >> rotate.f"];

makedefinephysicalxyf ile:=(

Print["Removing rotate.f"];

Run["rm de_inephysicalxy._"];

Print["Generating rotate routine rotate.f"];

stmp=OpenWrite["definephy sicalxytmp'f'''F°rmatType->F°rtranF°rm];

Write[stmp," subroutine de_inephysicalxy"];

N AS A/TM_ 1999-209182

249

Write [stmp," include 'common, h' "] ;

Write !strop, ""] ;

Write[stmp,"c* Define the physical coordinates in terms of integer indeces"] ;

Write [strop,"

Write [stmp ,"

Write [stmp,"

Writ e [stmp,"

Write [strop,"

Write [strop,"

Write [strop,"

do igridi,maxmemi," ," ,maxmemi] ;

physicalx(Igridi)= Igridi * h"];

end do"] ;

do igridj,maxmem3 ,",",maxmem3] ;

physicaly(igridj)= igridj * h"] ;

end do"] ;

end"] ;

Close [strop] ;

Run["sed -e 's/\"//g' -e 'sl\\\\I/g'

definephysicalxy.f"];

Run["rm definephysicalxytmp.f"];

definephysicalxytmpf >>

);

NASA/TM--1999-209 t 82

25O

B.6 Wall Boundary Calculation File - ma2d

This code will produce the fill file described in section 5.5.

(* *)

(* Do the rotated box case *)

(* ,)

(* ,)

(* Use memory constrain later for larger objects *)

(* ,)
(_

<< Utilities 'MemoryConserve '

*)

<< Geometry ' Rotations '

<< LinearAlgebra 'MatrixManipulation,

<< NumericalMath' Horner'

<< Graphics'PlotField'

<< Utilities'BinaryFiles'

startma: = (

Clear [makeequal] ;

If [Not [ValueQ[csize]] ,

csize=Input["Enter the stencil size: "];

];

If [Not [ValueQ [degree]] ,

degree=Input ["Enter the degree: "];

];

correctfillordering={};

johnlist7={};

johnlist8={};

topleftlist={};

If[Not[ValueQ[readgrid]],

readgrid=Input["Do you wish to read a grid definition file (1=Yes,O=No)"];

];

(* ,)

(* Either read grid definition file or create one in mathematica *)

(* ,)

If[readgrid==O,

buildcurves;

buildgrid,

buildcurves;

Print["Reading Grid File"];

readgridproc;

Print["Drawing Grid"];

drawgrid

];

Print["Calculating the 2D Hermitian Polynomial based Boundary Conditions"];

buildequationsforafillpoint;

NASA/TM--1999-209182

2.51

Print ["Defining Arrows"] ;

def inearrows2 ;

Clear Ix, y] ;

Print["Draw Entire Graph"];

drawentiregraph;

Print["Making fill arrays"];

makefillarrays;

Clear [x,y,i,] ,xc,yc,xf,yf] ;

initproc ;

get int formx ;

getintformy ;

Clear [a,b,c] ;

ncp[a_,b_,c_]:=(-(b+1)(my cp[a,b+l,c-l] + cv[a,b+l,c-1]) -(a+1) (rex

cp[a+l,b,c-l] + cu[a+1,b,c-l]))/c;

ncu[a_,b_,c_]:=(-(b+l) my cu[a,b+l,c-l] - (a+1) (mx cu[a+1,b,c-1] +

cp [a+l ,b,c-l]))/c;

nev[a_,b_,c_]:=(-(b+l) (my cv[a,b+l,c-l] + cp[a,b+l,c-l]) -(a+1) mx

cv[a+l,b,c-l])/c;

(_

initializetimestepping;

dothetimestepping;

*)

initializetimestepping:=(

physicaltime=O.O;

stepnumber=O;

mx=O;

my=O;

stagger=O;

(*

assigninitialdata;

*)

assigninitialdata2;

Print["Starting time advance "];

Print["N, t, maxperr llperr

showerror;

lam=.2;

timestep=lam*deltax;

phmax phmin

(* This loop performs the timestepping of the solution *)

eratio"];

NASA/TM-- 1999-209182

25_

(* ,)

dothetimestepping:=(

While[physicaltime<=1.0,

(*

While[stepnumber<=l,

*)

(* Up Step *)

IfKEvenQ[csize],

stagger=l];

dotimeadvance;

(* Do not do fill in on staggered grid for even stencils *)

If[UddQ[csize],

assignfillins;

];

physicaltime=physicaltime+timestep;

stepnumber=stepnumber+1;

(* *)

(* The stagger step should not be displayed, but could be later if desired *)

(* ,)
If [OddQ [csize] ,

showerror ;

];

(* Down Step *)

If [EvenQ [cs ize] ,

stagger=O] ;

dot imeadvanc e ;

assignfillins ;

physicalt ime=physicaltime+timest ep ;

s t epnumber= st epnumber + I ;

showerror ;

];

);

(* This procedure will create a list of each fill data type ,)

(* (p,u,v,px,pxx,pxy.ux etc.) *)

(* Each list will contain information to be read by the FORTRAN code to *)

(* compute its fill pts ,)

(* using interior known grid points only. ,)

makefillarrays := (

(* get the list of fill positions - those not needed in terms of matrix *)

(* coordinates ,)

(, .. ,)

fillposlist=correctfillordering;

NASA/TM-- 1999-209182

253

Print["Total number of needed fill points is ",Length[fillposlist]];

(* *)

(* Convert the matrix coordinates to grid coordinates *)
(* *)

Clear[matrixi,matrixj];

fillgridposlist=fillposlist /. {{matrixi:_,matrixj:_} -> {matrixj - im -

l,-matrixi + im + I}};

(*

fillgridposlistFOKTRAN=Flatten[fillgridposlist];

*)

(* *)

(* Create an array for each data type using the same ordering as fillposlist *)

(* *)

(*

dataPerGridPoint=3;
*)

numberofprimtypes=3;
onelongarray=(};

alldatalists={};

(*

(* Loop through all needed fills , creating a list

(*

Do[

gridi=fillgridposlist [[fillpt ct]] [[I]] ;

gridj =fillgr idposlist [[fillpt ct]] [[2]] ;

packetlist={gridi,gridj};

Print["starting with packet at ",gridi,gridj];

packetlistFORTRAN={};

(*

,)
,)
,)

,)

(* loop through all the data types at a single fill/grid point,

(* a list for each

(*

,)
.)
.)

Do[Do[Do[

matrixi:fillposlist[[fillptct]][[l]];

matrixj:fillposlist[[fillptct]][[2]];

variab_e_ist=Variab_es[fi__s__uti_ngrid[[matrixi_matrixj,_rimty_ect_dx+1_dy+_]]]

(* *)

(* Determine # of p data, u data, and v data for onelongarray *)
(* *)

datacases={};

AppendTo[datacases,Cases[variablelist, pressure[.......]]];

AppendTo[datacases,Cases[variablelist,uvelocity[.......]]];

AppendTo[datacases,Cases[variablelist,vvelocity[.......]]];

(* *)

(* Start the packet *)

NASA/TM-- 1999-209182

254

(* *)
(* *)
(*
packetlist={Length[datacases]};

packetlist={};

*)

Do[

(* *)
(* Insert # of p, u and v data *)

(* *)

AppendTo[packetlist,Length[datacases[[casect]]]];
,{casect,l,Length[datacases]}];

(* ,)

(* Add the data points to packet *)

(* ,)
(* Loop though all variable types *)

(, ,)
Do[

(, ,)

(* Loop through all variables of type ct *)
(* *)
Do[

stencilpt=datacases[[casect]][[et]];

Clear[mi,mj,mdx,mdy];
(* *)

(* Get the matrix coordinates of the data element *)

(* ,)

matrixitemp=stencilpt /.{ _[mi:] -> mi };

matrix]temp=stencilpt /.{ _[_,m]:] -> mj };

(* ,)

(* Get the Derivatives of the data element *)

(* *)
idx=stencilpt /.{ _[....mdx:_,_] -> mdx };

idy=stencilpt /.{ _[...... mdy:_] -> mdy };

_ _)

(* Convert it to grid coordinates *)

(* ,)

gridi= matrixjtemp - im - I;

gridj=-matrixitemp + im + I;

(* *)

(* For now use no derivatives *)

(,,)

coef=FortranForm[Coefficient[fillsolutiongrid[[matrixi

y+1]],stencilpt]];

(,,)

(* Use ptdata={gridi,gridj,ldx,ldy,coef}; later *)
(,,)

,matrixj,primtypect,dx+l,d

NASA/TM--1999-209182

255

ptdata={gridi,gridj,ldx,ldy,coef};

(*

ptdata={gridi,gridj,coef};

*)

AppendTo[packetlist,ptdata];

(* *)

(* # of p or u or v data elements for this fill point *)

(* *)

(* Add loop for dx, and dy data *)

,{ct,l,Length[datacases[[casect]]]}];

(* *)

(* Will be 3 for p,u,v in 2D and 4 for p,u,v,w in 3D *)

(* *)

,{casect, I, Length [datacases] }] ;

* .. *)

(* Now have a complete packet for current fill point *)

(* *)

(* Add the packet to the list of other packets for this data type list *)

(* *)

AppendTo[packetlistFOKTRAN,Flatten[packetlist]];

(* packetlistFOKTKAN has *)

(*{fillptlocx,fillptlocy,#ofp,#ofu,#ofv,pi,p],pdx,pdy,pcoef,..

ui,u],udx,udy,ucoef,..

vi,vj,vdx,vdy,vcoef,..

#ofp,#ofu,#ofv,pi,pj,pdx,pdy,pcoef,..

ui,u3,udx,udy,ucoef,..

vi,v],vdx,vdy,vcoef,..

... Until all data elements at fill point are

done...

,)

fillptlocx,fillptlocy,#ofp,#ofu,#ofv,pi,pj,pdx,pdy,pcoef ,

• . . etc.

until all fill points are defined ...

(* *)

(* packetlistFOKTRAN contains a list of packets. Each packet corresponds to *)

(* a fill point. All packets are for a single data element type however. *)

(* This process is repeated for all the data elements that are at grid point *)

(* Each packet provides a linear combination of the data required to compute *)

(* single data element at a single fill point location *)

(* *)

,{dx,O,degree}]

,{dy,O,degree}]

,{primtypect,l,numberofprimtypes}];

AppendTo[onelongarray,packetlist];

NASA/TM--199%209182

256

,{f illpt ct, 1, Length [f illposlist] }] ;

onelongarray=Flatten[onelongarray];

PrependTo[onelongarray,Length[fillposlist]];

PrependTo[onelongarray,Length[onelongarray]];

maxlength=Length[onelongarray];

stmp=OpenWriteBinary["fillarrays.bin",FormatType->FortranForm];

*)

stmp=OpenWrite["fillarrays"];

Do[

(*

Write[stmp,onelongarray];

,)

Write[stmp,onelongarray[[ct]]];

,{ct,l,Length[onelongarray]}];

Close[stmp];

);

*)

(* This procedure will use the values of the interior points to determine *)

(* the value of the fill in points. ,)

(* ,)
assignfillins := (

(* *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1 in *)

(* top left ,)

(* ,)
correctedi[this]_]:=im-thisj+1;

corrected3[thisi_]:=im+thisi+l;

Do[

(*

matrixicoord=correctedi[]ct];

matrixjcoord=correctedj[ict];

*)

matrixicoord=correctfillordering[[fillptct]][[1]];

matrixjcoord=correctfillordering[[fillptct]][[2]];

(* *)

(* If this location is a fillin and its needed, then fill it in with data *)

(* ,)

If[thegrid[[matrixicoord,matrix]coord]]==2,

If[Not[MemberQ[ignorelist,{matrixicoord,matrix3coord}]],

(, ,)

(* For now use no derivatives *)

(, ,)
(*

Idx=O; idy=O;

*)

NASA/TM-- 1999-209182

257

Do[Do[

prelation=fillsolutiongrid[[matrixicoord,matrixjcoord,l,ldx+l,ldy+1]];

urelation=fillsolutiongrid[[matrixicoord,matrixjcoord,2,1dx+1,1dy+l]];

vrelation=fillsolutiongrid[[matrixicoord,matrixjcoord,3,1dx+l,ldy+l]];

(* *)

(* Assign the fill in using the equation stored in fillsolutiongrid *)

(* *)

Clear[al,bl,cl,dl,el,fl,gl,il,jl,kl];

Clear[aal,bbl,ccl,ddl,eel,ff_,ggl,iil,jjl,kkl];

rhsl=(prelation /. {

pressure[al:_Integer,bl:_Integer,aal: Integer,bbl: Integer] ->

pressuregrid[[al,bl,aa1+_,bb1+1]]});

Clsar[al,bl,cl,dl,el,fl,gl,il,jl,kl];

Clear[aal,bbl,ccl,ddl,eel,ffl,ggl,iil,jjl,kkl];

rhs2=(urelation /.

{uvelocity[cl:_Integer,dl:_Integer,ccl:_Integer,ddl:_Integer] ->

uvelocitygrid[[cl,dl,ccl+l,ddl+l]],

vvelocity[e1:_Integer,fl:_Integer,ee1:_Integer,ff1:_Integer] ->

vvelocitygrid[[el,fl,eel+l,ffl+1]]});

Clear[al,bl,cl,dl,el,fl,gl,il,jl,kl];

Clear[aal,bbl,ccl,ddl,eel,ffl,ggl,iil,jjl,kkl];

rhs3=(vrelation /.

{vvelocity[gl:_Integer,il:_Integer,ggl:_Integer,iil:_Integer] ->

vvelocitygrid[[gl,il,gg/+l,ii/+l]],

uvelocity[jl:_Integer,kl:_Integer,jjl:_Integer,kkl:_Integer] ->

uvelocitygrid[[jl,kl,jjl+l,kkl+l]]});

(*

Print["Fill assigning ",matrixicoord," , ",matrix3coord," ",rhsl," ",rhs2,"

",rhs3];

*)

pressuregrid[[matrixicoord,matrix3coord,ldx+l,ldy+l]]=rhsl;

uvelocitygrid[[matrixicoord,matrixjcoord,ldx+l,ldy+l]]=rhs2;

vvelocitygrid[[matrixicoord,matrixjcoord,ldx+l,ldy+i]]=rhs3;

,{idx,O,degree}]

,{Idy,O,degree}]

]]

,{fillptct,1,Length[correctfillordering]}];

(*

,{ict,-im,im}]

,{3ct,-im,im}];

*)

);

(* ,)

(* This procedure will

(* step

(*

advance the primitive variables p,u,v to the next time *)

*)

*)
dotimeadvance := (

h=deltax;

NASA/TM--1999-209182

258

nextpressuregrid

=Table[Table[Table[Table[O,{dy,0,degree}],{dx,O,degree}],{j,-im,im}],{i -im,im}]

nextuvelocitygrid

=Table[Table[Table[Table[O,{dy,O,degree}],{dx,0,degree}],{3,-im,im}],{i -im,im}]

nextvvelocitygrid

=Table[Table[Table[Table[0,{dy,O,degree}],{dx,O,degree}],{],-im,im}],{i -im,im}]

(* *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with *)

(* I,i in top left ,)

(* ,)

correctedi[thisj_J:=im-thisj+l;

correctedj[thisi_J:=im+thisi+l;

Do [Do [

matrixicoord=correctedi [jct] ;

matrixj coord:correctedj [ict] ;

If[Not[ValueQ[interpolantorder]],

interpolantorder=csize* (degree+l);

];

numberofcterms=interpolantorder-l;

(* *)

(* Compute s *)

(, ,)

If[EvenQ[csize],

Do[

Do[

Do[

s[dy,iindex,]]=Collect[xc[iindex],fc[.......]];

,{iindex,0,numberofcterms}]

,{dy,O,degree}]

,{],l-(csize/2),csize/2}];

Do[

Do[

Do[

s[dy,iindex,j]=Collect[xc[iindex],fc[.......]];

,{iindex,0,numberofcterms}]

,{dy,0,degree}]

,{j,-IntegerPart[csize/2],IntegerPart[csize/2]}];

];

(* ,)

(* Compute a, spatial interpolants cp,cu,cv *)

(* ,)

Clear[iindex,]index,kindex];

Do[Do[Do[

N ASA/TM-- 1999-209182

259

(_

If[(iindex>maxind I] jindex >maxind),

cp[iindex,jindex,kindex]=O;

cu[iindex,jindex,kindex]=O;

cv[iindex,jindex.kindex]=O;

]

,)

cp[iindex,jindex,kindex]=O;

¢u[iindex,jindex,kindex]=O;

cv[iindex,jindex.kindex]=O

,{iindex,O,maxind+2}]

,{jindex,O,maxind+2}]

,{kindex,O,2 maxind}];

DoE

Do[

Clear [newdx ,newdy ,newi ,new j] ;

Clear[newdx2,newdy2,newi2,newj2];

(* CP SPATIAL COEFFICIENTS *)

cp[iindex,jindex,O]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_] ->

s[newdy,newdx,newj] } /. {dx->iindex} /.

{ fc[newdx2:_,newdy2:_,newi2:_,newj2:_] ->

pressuregrid[[matrixicoord-newj2,matrixjcoord+newi2,newdx2+l,newdy2+1]]};

(_

Clear[newdx,newdy,newi,newj];

Clear[newdx2,newdy2,newi2,newj2];

cp[iindex,jindex,O]=cp[iindex,jindex,O] /. {

fc[newdx2:_,newdy2: ,newi2: ,newj2:_] ->

newfc[matrixicoord-newj2,matrixjcoord+newi2,newdx2+l,newdy2+l] };

Clear[newdx2,newdy2,newi2,newj2];

cp[iindex,jindex,O]=cp[iindex,jindex,O] /. {

fc[newdx2:_,newdy2:_,newi2: ,newj2:_] ->

pressuregrid[[newdx2,newdy2,newi2,newj2]]};

*)

(*

pressuregrid[[matrixicoord-newj2,matrixjcoord+newi2,newdx2+l,newdy2+l]]};

*)

(* CU SPATIAL COEFFICIENTS *)

Clear[newdx,newdy,newi,newj];

Clear[newdx2,newdy2,newi2,newj2];

cu[iindex,3index,O]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_] ->

s[newdy,newdx,newj] } /. {dx->iindex} /. {

fc[newdx2:_,newdy2:_,newi2:_,newj2:_]->

uvelocitygrid[[matrixicoord-newj2,matrixjcoord+newi2,newdx2+l,newdy2+l]]};

(* CV SPATIAL COEFFICIENTS *)

Clear[newdx,newdy,newi,newj];

Clear[newdx2,newdy2,newi2,newj2];

cv[iindex,3index,O]=yc[jindex] /. {fc[newdx:_,newdy:_,newi:_,newj:_] ->

NASA/TM-- 1999-209182

260

s[newdy,newdx,newj] } /. {dx->iindex} /.

fc[newdx2:_,newdy2:_,newi2:_,newj2:]->

vvelocitygrid[[matrixicoord-newj2,matrixjcoord+newi2,newdx2+1,newdy2+l]]};

,{3index,O,numberofcterms}]

,{iindex,O,numberofcterms}];

(* ,)

(* Compute cp,cu,cv, time-space interpolant coefficients *)

(* ,)

Do[Do[Dot

cp[iindex,jindex,kindex]=ncp[iindex,jindex,kindex];

cu[iindex,jindex,kindex]=ncu[iindex,jindex,kindex];

cv[iindex,jindex,kindexJ=ncv[iindex,jindex,kindex];

,{iindex,O,Min[maxind,2*maxind-kindex-jindex]}]

,{jindex,O,maxind}]

,{kindex,l,2 maxind}];

(* Time advance NOT using Horner form *)

Do[Do[

psum=O.O;usum=O.O; vsum=O.O;

Do[

(*

psum=psum+dx! * dy! * physicaltstep**kindex*cp[dx,dy,kindex];

usum=usum+dx! * dy! * physicaltstep**kindex*cu[dx,dy,kindex];

vsum=vsum+dx! * dy! * physicaltstep**kindex*cv[dx,dy,kindex];

*)

psum=psum+(dx! * dy!) * (timestep'kindex).cp[dx,dy,kindex];

usum=usum+(dx! * dy!) * (timestep'kindex)*cu[dx,dy,kindex];

vsum=vsum+(dx! • dy!) * (timestep^kindex)*cv[dx,dy,kindex];

,{kindex,O,2 maxind}];

(, ..,)

(* Use -stagger since using matrix indeces *)

(* dx+l,dy+1 not dx,dy since in matrix notation *)

(, ..,)
(*

Print["Assigning ",matrixicoord-stagger," , ",matrixjcoord+stagger," , ",psum,"

, ",usum," , ",vsum] ;

*)

nextpressuregrid[[matrixicoord-stagger,matrixjcoord+stagger,dx+l,dy+1]]=psum;

nextuvelocitygrid[[matrixicoord-stagger,matrixjcoord+stagger,dx+1,dy+1]]=usum;

nextvvelocitygrid[[matrixicoord-stagger,matrixjcoord+stagger,dx+l,dy+l]]=vsum;

,{dx,O,degree}]

,{dy,O,degree}];

,{ict,-im+2,im-2}]

,{jct,-im+2,im-2}];

(* Put the time advanced level back onto the first time level *)

NASA/TM-- 1999-209182

261

,)

pressuregrid=nextpressuregrid;

uvelocitygrid=nextuvelocitygrid;

vvelocitygrid=nextvvelocitygrid;

);

showerror :: (

(*

stmp4=OpenWrite ["numaerrorfile3"] ;

*)
(* *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with I,I in *)

(* top left *)

(* *)

correctedi[thisj_]:=im-thisj+l;

correctedj[thisi_]:=im+thisi+1;

maximumerrorfound=O.O;

llerror=O.O;

maxpressurefound=O.O;

minpressurefound=O.O;

currentenergy=O.O;

(* *)

(* Loop through all fill's and int's computing pressure error at this timestep *)

(* number *)

(* *)
Do[Do[

matrixicoord=correctedi[jct];

matrixjcoord=correctedj[ict];

oldphysicalpositionvector={ict*deltax,jct*deltax};

newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[-theta],{O,O}];

newphysicalicoord=newphysicalpositionvector[[1]];

newphysicaljcoord=newphysicalpositionvector[[2]];

If[thegrid[[matrixicoord,matrixjcoord]]=:l II

thegrid[[matrixicoord,matrixjcoord]]==2,

If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],

(* *)

(* Add up the current global energy in system *)

(* *)
(*
Write[stmp4,pressuregrid[[matrixicoord,matrixjcoord,l,1]],"

",uvelocitygrid[[matrixicoord,matrixjcoord,l,1]],"

",vvelocitygrid[[matrixicoord,matrixjcoord,l,1]]," ",currentenergy," ",ict,"

",jct];
*)

currentenergy:currentenergy+(pressuregrid[[matrixicoord,matrixjcoord,l,1]]'2

+uve__citygrid[[matrixic__rd_matrixjc__rd____]]_2+vve__citygrid[[matrixic__rd_ma

trixjcoord,l,1]]'2);

(,,)

(* The plus comes from a minus minus *)

NASAFFM-- 1999-209182

262

(* *)

absoluteperror =

Abs[N[pressuregrid[[matrixicoord,matrixjcoord,1,1]]+(Cos[Sqrt[2] Pi

physicaltime] Cos[Pi nswphysicalicoord] Cos[Pi newphysicaljcoord])]];

(* *)

(* Convert x and y coordinates to polar coordinates *)

(* ,)
(*

physicaltheta = ArcTan[newphysicalicoord,newphysicaljcoord];

*)

physicalr = Sqrt[newphysicalicoord-2+newphysicaljcoord-2];

(* ,)

(* Can use any of the eigenvalues from BesselJPrimeZeros[O,n] *)

(* ,)
bessellam:=3.83171;

R[r_] := Sqrt[2] BesselJ[O,bessellam r]/BesselJ[O,bessellam];

(* Can use any constant *)

besseld=5;

(*

correctanswer=besseld R[physicalr] Cos[bessellam physicaltime] / Sqrt[2 Pi];

Print ["Correct Answer at matrixi,matrixjj is

",matrixicoord, ", ",matrixj coord, ",°' ,correctanswer,"

", pressuregrid [[matrixicoord, matrixj coord, I, i]]] ;

*)

(*

absoluteperror =

Abs [N [pressuregrid [[matrixicoord, matrixj coord, i, I]] -correctanswer]] ;

*)

If [absoluteperror > maximumerrorfound,

maximumerrorf ound = abs o lut eperror ;

matrixilocationof error=matrixicoord ;

matrixj locat ionof error=matrixj coord ;

];

llerror = llerror + absoluteperror;

(*

Print ["p=", matrixicoord, ", ", matrixj coord, ", '°,pressur egrid [[matrixicoord, matrixj c

oord,1,1]]];

Print ["u=", mat rixicoord, ", ", matrixj coord, ", ", uvelocit ygrid [[matrixicoord, matrixj

coord,1,1]]] ;

Print ["v=", matrixicoord," ,", matrix3 coord, ", ", vvelocitygrid [[matrixicoord ,matrixj

coord, I, I]]] ;

*)

If [pres suregrid [[matrixicoord, matrix3 coord, I, i]] > maxpres surefound,

maxpressurefound = pressuregrid[[matrixicoord,matrixjcoord,l,1]]];

If [pressuregrid [[matrixicoord, matrix3 coord, I, I]] < minpressurefound,

minprsssurefound = pressuregrid [[matrixicoord ,matrix3 coord, I, I]]] ;

]]

,{ict,-im, im}]

,{j ct,-im, im}] ;

NASA/TM-- 1999-209182

:_63

(*
Close[stmp4];

*)

energyratio=currentenergy/initialenergy;

llerror=llerror*deltax-2;

Print[stepnumber," ", physicaltime,"

", maxpressurefound, "

);

", maximumerrorfound,"

",minpressurefound, " ",energyratio];

", llerror,"

(* *)

(* This procecure will assign all primitive variables their initial data *)

(* *)

assigninitialdata := (

pressuregrid

_Tab_e[Tab_e[Tab_e[_ab_e[__{dy___degree}]_{dx___degree}]_{j_-im_im}]_{i_-im_im}]

uvelocitygrid

=Tab_e[Tab_e[Tab_e[Tab__[__{_y___degre_}]_{dx___degree}]_{j_-im_im}]_{i_-im_im}]

vvelocitygrid

=Tab_e[Tab_e[Tab_e[Tab_e[__{dy___degree}]_{dx___degree}]_{j_-im_im}]_{i_-im_im}]

(*

uvelocitygrid=Table[Table[O,{j,-im,im}],{i,-im,im}];

vvelocitygrid=Table[Table[O,{j,-im,im}],{i,-im,im}];

*)

(* *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1 *)

(* in top left *)

(, ...,)

correctedi[thisj_]:=im-thisj+l;

correctedj[thisi_]:=im+thisi+l;

(* *)

(* Loop through all grid points, assigning rotated initial data *)

(* *)

initialenergy=O.O;

Do[DoG

matrixicoord=correctedi[jct];

matrixjcoord=correctedj[ict];

oldphysicalpositionvector={ict*deltax,3ct*deltax};

newphysicalpositionvector=_otate2D[oldphysicalpositionvector,N[-theta],{O,O}];

newphysicalicoord=newphysicalpositionvector[[1]];

newphysicaljcoord=newphysicalpositionvector[[2]];

<* *)

(* if the point is an interior or fill, then assign it an initial condition *)

(* *)

(* *)

(* Assign Bessel Function for circle problem *)

(, ...,)

If[thegrid[[matrixicoord,matrixjcoord]]==l II

NASA/TM--1999-209182

264

thegrid[[matrixicoord,matrixjcoord]]==2,

If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],

pressuregrid[[matrixicoord,matrixjcoord,1,1]]=N[-(Cos[Pi newphysicalicoord] *

Cos[Pi newphysicaljcoord])];

uvelocitygrid[[matrixicoord,matrixjcoord,i,l]]= 0.0;

vvelocitygrid[[matrixicoord,matrixjcoord,1,1]]= 0.0;

(* *)

(* Add up initial energy *)

(* *)

initialenergy=initialenergy+(pressuregrid[[matrixicoord,matrixjcoord,l,i]]-2

+uvel_citygrid[[matrixic__rd,matrixjc__rd,1,1]_-2+vvel_citygrid[[matrixic__rd_ma

trixjcoord,l,1]]^2);

]

J

,{ict,-im,im}]

,{Jct,-im,im}]

);

assigninitialdata2 := (

pressuregrid

=Table[Table[Table[Table[O,{dy,O,degree}],{dx,O,degree}],{3,-im,im}],{i -im,im}]

uvelocitygrid

=Tab_e[Tab_e[Tab_e[Tab_e[__{dy___degre_}]_{dx___d_gr__}__{j_-im_im}]_{i_-im_im}_

vvelocitygrid

=Tab_e[Tab_e[Tab_e[Tab_e[__{dy___degre_}]_{dx___d_gre_}]_{j_-im_im}]_{i_-im,im}]

(*

uvelocitygrid=Table[Table[O,{j,-im,im}],{i,-im,im}];

vvelocitygrid=Table[Table[O,{j,-im,im}],{i,-im,im}];

*)

(* *)

(* Adjust the grid indexing with 0,0 in center to matrix indexing with 1,1 *)

(* in top left ,)

(* ,)
correctedi[thisj_]:=im-this3+1;

correctedj[thisi]:=im+thisi+1;

(* *)
(* Loop through all grid points, assigning rotated initial data *)

(* ,)
initialenergy=O.O;

Do[Do[

matrixicoord=correctedi[jct];

matrixjcoord=correctedj[ict];

oldphysicalpositionvector={ict,deltax,jct,deltax};

newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[_theta],{O,O}];

newphysicalicoord=newphysicalpositionvector[[1]J;

newphysicaljcoord=newphysicalpositionvector[[2]];

(, ..,)

(* if the point is an interior or fill, then assign it an initial condition *)

NASA/TM-- 1999-209182

265

(* *)

(* *)

(* Assign Bessel Function for circle problem *)

(* *)

If[thegrid[Ematrixicoord,matrixjcoord]]==1 [[

thegrid[[matrixicoord,matrixjcoord]]==2,

If[Not[MemberQ[ignorelist,{matrixicoord,matrixjcoord}]],

Do[DoE

correctp=D[-Cos[Pi x] Cos[Pi y],{x,dx},{y,dy}];

pressuregrid[Ematrixicoord,matrixjcoord,dx+l,dy+1]]=N[correctp /. {

x->newphysicalicoord, y->newphysicaljcoord}];

(*

Print["p=__,matrixic__rd,matrixjc__rd,dx+1,dy+1,new_hysicalic__rd,newphysicaljc__

rd,correctp];

*)

uvelocitygrid[[matrixicoord,matrixjcoord,dx+1,dy+1]]= 0.0;

vvelocitygrid[[matrixicoord,matrixjcoord,dx+l,dy+1]]= 0.0;

,{dx,0,degree}]

,{dy,0,degree}];

(* *)

(* Add up initial energy *)

(* *)

initialenergy=initialenergy+(pressuregrid[[matrixicoord,matrixjcoord,1,1]]'2

+uvel_citygrid[[matrixic__rd,matrixjc__rd,1,_]]-2+vvel_citygrid_[matrixic__rd,ma

trixjcoord,1,1]]^2);

]

]

,{ict,-im,im}]

,{jct,-im,im}]

);

(* *)

(* This procedure will generate a matrix of the entire grid, marked with *)

(* i for Interior, 2 for Fill, and 0 for boundary *)

(* It needs to be given the list of curves, and a single point for each *)

(* object signifying the inside of the solid object *)

(, ... ,)

buildgrid := (

*)

(* Expand depth of recursion, uses I0,000 bytes per depth, use memory

(* constrained

(*

*)

*)

,)

SRecursionLimit=(2 im + I) _ 2;

bigcount=O;
(* *)

(* Set entire grid to O, all boundary *)

NASA/TM-- 1999-209182

266

(* *)

thegrid=Table [Table [0, {i,-im, im}], {j,-im, im}] ;

arrowgrid=Table [Table [{{0,0}}, {i, -im, im}], {j, -im, im}] ;

(*

udxdylist =Table [Table ["U", {dx, 0 ,degree}] ,{dy, 0 ,degree}] ;

(,,)

(_ Make a big list combining p,u, and v _)

(* *)

bigulist ={udxdylist, udxdylist, udxdylist } ;

f illsolut iongrid=Table [Table [bigulist, {i, -im, im}] ,{j, -im, im}] ;

*)

f illsolut iongrid=Table [Table [Table [Table [Table ["U", {dy, O, degree}] ,{dx, O, degree}]

,{ict, 1,3}1 ,{j,-im, im}] ,{i,-im, im}] ;

f illsolut iongrid=Table [Table [{"U", "U", "U"}, {i,-im, im}] ,{j, -im, ira}];

*)

gr idp=Tabl e [Table [Table [Table [pres sure [i+ im+ I,j +im+ I, dx, dy] ,{dy, O,degree}] ,{dx, 0

,degree}] ,{j,-im,im}] ,{i,-im,im}] ;

gr idu=Table [Table [Table [Table [uvelocity [i+im+ I,j + ira+I, dx, dy] ,{dy, O,degree}] ,{dx,

O,degree}] ,{j,-im, im}] ,{i,-im,im}] ;

gridv=Table [Table [Table [Table [vveloc ity [i+im+ I,j +im+ I, dx, dy] ,{dy, O, degree}] ,{dx,

O,degree}] ,{j,-im, im}] ,{i,-im,im}] ,

(*

gridu=Table [Table [uveloc ity [i+im+ I, j+im+ 11 ,{3, -im, im}] ,{i, -im, im}] ;

gridv=Table [Table [vveloc ity [i+ im+ I, j+im+ 11 ,{j ,-im, im}] ,{i, -im, im}] ;

*)

(* *)

(* Fill all areas with interior and fill labels where justified *)

(* By starting at each point defined to be inside, recursively. *)

(* *)

Do[

gridi=listofcenterpoints[[centerct]][[l]];

gridj=listofcenZerpoints[[centerct]][[2]];

recursivelabel[gridi,gridj]

,{centerct,1,Length[listofcenterpoints]}];

tRecursionLimit=256;

(* Draw a picture of fills, ints, B's, grid and curves *)

(* *)

correctedi[thisj_]:=im-this3+l;

correctedj[thisi_]:=im+thisi+l;

alpha=theta;

picturelist={};

Do[Do[

thevalue=thegrid[[correctedi[j]]][[correctedj[i]]];

physicali=i*deltax;

NASA/TM--1999-209182

267

phys icalj =j *de it ay ;

If [thevalue==l ,theobj ect=Disk [{physicali ,physical j},. 0333 ;

If [thevalue==2, theobj ect =Circle [{physical i,phys icalj },. 03]] ;

If [thevalue==O, theobj ect =Text ["B", {physical i, physicalj }, {0,0}]] ;

pictur el ist =Append [picturelist, theobj ect]

,{i,-im,im}]

,{j,-im, im}] ;

titlestring="Rotation Angle = "<>ToString[N[alpha]];

filestring="boxat"<>ToString[N[alpha]];

SetOptions[Display,ImageSize-> 72 * 8, ImageRotated->True];

(_

Display[filestring,

Show[Graphics[{PointSize[O.OS],picturelist}],PlotLabel->titlestring],"EPS"];

Sh_w[Gra_hics[{P_int_iz_[_._5*de_tax]_icture_ist}]_P_tLabe_->tit_estring_As_ec

tRatio->Automatic];

(*

_h_w[Graphics[{P_intSize[_._____icture_ist_Line[_ine[_]]_Line[_ine[2]]_Line[_ine

[3__,Line[line[4__,{P_int_ize[._2_,P_int[{_,_}]}}_,Pl_tLabel->titlestring,Axes->

True,AspectRatio->Automatic,GridLines->{ticklist,ticklist}];

*)

Sh_w[Gra_hics[{P_intSize[_._5_,_icturelist,{P_intSize[._2],P_int[{_,_}_}}_,g2,Di

sp_ayFuncti_n->$Disp_ayFuncti_n,P__tLabe_->titlestring,Axes->True,AsPectRati_->A

utomatic,GridLines->{ticklist,ticklist}];

);

(* *)

(* This procedure will label a Cartesian grid with l's and 2's

(* if one of its edges cuts a boundary, this is a fill point = 2

(* Will recursively call its other neighbors that do not have a

(* boundary in between.

(* X X X *)

(* \ I / *)

(* X - O - X *)

(* / I \ *)

(* X X X *)

(.)

,)
,)
,)
,)

recursivelabel[myi_,myj_] := (

Print["myi = ",myi," myj = ",my3," bigcount = ",++bigcount," Memory In Use =

",MemoryInUse[]];

(* *)

(* Need to change coordinate systems between matrix notation and curve with *)

(* (x,y) = (0,0) at center of matrix at thegrid[[im]][[im]] *)

NASA/TM--1999-209182

268

(* ,)

correct edi [thisj _] :=im-thisj + I ;

correctedj [thisi_] :=im+thisi+1 ;

(* ,)

(* Define this grid point as an interior, perhaps change to fill later *)

(* ,)
thegrid[[correctedi[myj],correctedj[myi]]]=l;

Print["Grid pt ",correctedi[myj]," ",correctedj[myi]];

*)

(, ,)
(* Right *)

(* x=t, y=myj, myi<=t<=myi+l *)
(* *)

theline={t,myj*deltay,myi*deltax,(myi+l)*deltax};

If [intersection [theline],

(* ,)
(* This point is a fill since boundary intersects *)

(* ,)
thegrid[[correctedi[myj],correctedj[myi]]]=2,

(* *)

(* If not intersects, and next point is not defined then call it *)

(* ,)

If[thegrid[[correctedi[my3]]][[correctedj[myi+l]]]==O,

recursivelabel[myi+1,myj]]];

(* *)

(* Right, Bottom *)

(, ,)

theline={t, -t +(myi*deltax +my3*deltay),myi*deltax,(myi+l)*deltax};

If[intersection[theline],

(* *)

(* This point is a fill since boundary intersects *)

(* ,)

thegrid[[correctedi[myj],corrected3[myi]]]=2,

(* ,)

(* If not intersects, and next point is not defined then call it *)

(, ...,)

If[thegrid[[correctedi[myj-1]]][[correctedj[myi+l]]]==O,

recursivelabel[myi+l,myj-l]]];

NASA/TM--1999-209182

269

(_ _)

(* Bottom *)

(, ,)

theline={myi*deltax,t,(myj-1)*deltay,myj*deltay};

If[intersection[theline],

(* *)

(* This point is a fill since boundary intersects *)

(* *)

thegrid[[correctedi[my]],correctedj[myi]]]=2,

(, ... ,)

(* If not intersects, and next point is not defined then call it *)

(* *)

If[thegrid[[correctedi[myj-1]]][[correctedj[myi]]]=:O,

recursivelabel[myi,myj-l]]];

(* *)

(* Left, Bottom *)
(* *)

theline={t,t-(myi*deltax)+(myj*deltay),(myi-1)*deltax,myi*deltax};

If[intersection[theline],

(, .. ,)

(* This point is a fill since boundary intersects *)

(, .. ,)

thegrid[[correctedi[myj],corrected][myi]]]=2,

(* *)

(* If not intersects, and next point is not defined then call it *)

(, ... ,)

If[thegrid [[correct edi [myj-I]]] [[correct ed3 [myi-1]]]==0,

recursivelabel [myi-1,my3- I]]] ;

(* *)

(* Left *)
(, ,)

theline={t,myj*deltay,(myi-1)*deltax,myi*deltax};

If[intersection[theline],

(, .. ,)

(* This point is a fill since boundary intersects *)

(* *)

thegrid[[correctedi[myj],correctedj[myi]]]=2,

(, ... ,)

(* If not intersects, and next point is not defined then call it *)

(* *)

NASA/TM--1999-2091 {42

270

If [thegrid [[correctedi[myj]]] [[correctedj[myi-1]]] ==0,
recursivelabel[myi-1,my3]]] ;

(* *)
(* Left, Top*)
(* *)

theline={t,-t+(myi*deltax)+(myj*deltay),(myi-1)*deltax,(myi*deltax)};

If[intersection[theline],

(* *)

(* This point is a fill since boundary intersects *)

(* *)

thegrid[[correctedi[myj],correc_edj[myi]]]=2,

(* *)

(* If not intersects, and next point is not defined then call it *)
(* *)

If [thegrid[[correctedi[myj+l]]] [[corrected3 [myi-l]]] ==0,

recursivelabel [myi-I ,myj+l]]] ;

(* ---- *)

(* Top *)
(* --- *)

theline={(myi*deltax),t,(myj*deltay),(my3+l)*deltay};

If[intersection[theline],

(* *)

(* This point is a fill since boundary intersects *)

(* *)

thegrid[[correctedi[myj],correctedj[myi]]]=2,
(, ... ,)

(* If not intersects, and next point is not defined then call it *)
(* *)

If[thegrid[[correctedi[myj+1]]][[correctedj[myi]]]==O,

recursivelabel[myi,myj+1]]];

(* *)

(* Right, Top *)

(* *)

theline={t,t-(myi*deltax)+(myj*deltay),myi*deltax,(myi+1)*deltax};

If[intersection[theline],

(* *)

(* This point is a fill since boundary intersects *)

(, .. ,)

NASAFFM--1999-209182

271

thegrid [[correct edi [myj] ,correctedj [myi]]]=2,

(* *)

(* If not intersects, and next point is not defined then call it *)

(, ...,)

If [thegrid[[correctedi[myj+l]]] [[correctedj [myi+l]]] ==0,

recurs ivelabel [myi+ I,myj + i]]]

);

(* *)

(* This procedure will test iT theline intersects any of the specific curves *)

(, *)
intersection[theline_]: = (

intersect=False;

Do[

(,,)

(* the x equation for parametrized curve *)

(* X=f(t), y=g(t), tstart <= t <= tend *)

(* *)

curvexequation= listofcurves[[curvenumber]][[13];

curveyequation= listofcurves[[curvenumber]][[2]];

curvetstart = listofcurves[[curvenumber]][[3]];

curvetend = listofcurves[[curvenumber]][[4]];

curvetmin=Min[curvetstart,curvetend];

curvetmax=Max[curvetstart,curvetend];

x2equation=theline[[1]];

y2equation=theline[[2]];

t2start= theline[[3]];

t2end= theline[[4]];

t2min=Min [t2start, t2end] ;

t2max=Max [t2start, t2end] ;

a__ts_S__ve[{curvexequati_n__x2equati_n_curveyequati_n__y2equati_n}_{t__urvet}];

Do[

thecurvet=curvet/. Flatten[allts[[tct]]];

thelinet=t/. Flatten[allts[[tct]]];

If[((thecurvet >= curvetmin) &_ (thecurvet <= curvetmax) _

(thelinet >= t2min) &a (thelinet <= t2max)) ,

intersect=True]

,{tct,l,Length[allts]}]

,{curvenumber,1,Length[listofcurves]}];

intersect

);

NASA/TM--1999-209182

272

*)
(* This section will, when given a 3 by 3 stencil of only interior and fill *)

(* points generate the set of polynomials that need solved, solve them and *)

(* provide a function for each fill point in the stencil .)

(* It uses the arrow information provided from the bigger 5 by 5 stencil *)

(* to put in the correct equations. .)

(* Work on this wording ,)

(* ,)

(* ,)

(* The three interpolation functions that need cp, cu, and cv defined *)

(, ..,)

(* .)

(* maxind : # of grid points in one direction of stencil -I *)

(* including derivative data for Hermitian data .)

(* ,)

p[x_,y_]:=Horner[Sum[cp[i3,j3] x'i3 y'j3 , {j3,0,maxind},{i3,0,maxind}]];

u[x_,y_]:=Horner[Sum[cu[i3,j3] x-i3 y^]3 , {j3,0,maxind},{i3,0,maxind}]];

v[x_,y_]:=Horner[Sum[cv[i3,j3] x'i3 y^]3 , {j3,0,maxind},{i3,0,maxind}]];
*)

*)

(* This procedure will compute the normals for a boundary curve
(* listofcurves

(*

specified in *)

*)

*)

(* Returns the unit normal vector on curve # curvect at position ,)

(* t=thevalueofcurvet ,)

(, ..,)

computenormals[curvect_,thevalueofcurvet_] := (

(, ..,)

(* Get x and y functions of parameter curvet for a particular curve *)

(, ..,)

curvexequation=listofcurves[[curvect]][[1]];

curveyequation=listofcurves[[curvect]][[2]];

(_ ,)
(* Compute the derivatives of the x and y functions with respect to the *)

(* parameter ,)

(, ...,)

yderiv=D[curveyequation,curvet] /. {curvet -> N[thevalueofcurvet]};

xderiv=D[curvexequation,curvet] /. {curvet -> N[thevalueofcurvet]};

If[(xderiv==O _& yderiv==O), Print["Error in normal vector slope"],
If[xderiv!=O _ yderiv!=O _&

Not[xderiv === ComplexInfinity] &_

NASA/TM--1999-209182

273

Not[yderiv === Complexlnfinity] ,
(* *)

(* Tangential slope direction *)
(* *)

tslope=yderiv/xderiv;
(* *)

(* Normal slope direction *)

(* *)

nslope=-xderiv/yderiv;

un={ I/(l+nslope^2), nslope/(1+nslope-2) };

(*

ut[curvect]={ I/(l+tslope'2), tslope/(l+tslope'2) };

*)

(* *)

(* Vertical Tangent *)

(* *)

If[xderiv==O il yderiv === Complexlnfinity,

un = {I,0};

(*

ut[curvect] := {0,I};

*)

];

(* *)

(* Horizontal Tangent *)

(* *)

If[yderiv==O Jl xderiv === ComplexInfinity,

un = {0,i};

(*

ut[curvect] := {I,0};

*)

];

]];

(*

(* Return the unit normal vector of the curve at the correct location on the *

(* curve *

(, •

un=un/Sqrt[un[[1]]'2+un[[2]]'2];
un /. { curvet -> thevalueofcurvet }

);

(* This procedure will compute the tangents for a boundary curve specified in *

(* listofcurves *
(* *

(* Returns the unit tangent vector on curve # curvect at position
(* t=thevalueofcurvet

(*

computetangents[curvect_,thevalueofcurvet_] := (
(, .. .)

NASAFFM--1999-209182

274

(* Get x and y functions of parameter curvet for a particular curve *)

(* ,)

curvexequation=listofcurves[[curvect]][[1]];

curveyequation=listofcurves[[curvect]][[2]];

(* *)

(_ Compute the derivatives of the x and y functions with respect to the

(_ parameter

(*

*)

*)

*)
yderiv=D [curveyequation, curvet] /. {curvet -> N [thevalueofcurvet] };

xderiv=D [curvexequation, curvet] /. {curvet -> N [thevalueofcurvet]);

If[(xderiv==O _& yderiv==O), Print["Error in normal vector slope"],

If [xderiv !=0 && yderiv !=0 &_

Not[xderiv === ComplexInfinity] _&

Not[yderiv === ComplexInfinity] ,

(* *)

(* Tangential slope direction *)

(, ,)

t slope=yderiv/xderiv ;
(, ,)

(* Normal slope direction _)

(* *)

nslope=-xderiv/yderiv ;

un={ 1/(1+nslope'2), nslope/(1+nslope'2) };

ut={ I/(l+tslope'2), tslope/(l+tslope'2) };

(* *)

(_ Vertical Tangent _)

(* *)

If[xderiv==O [[yderiv === Complexlnfinity,
un = {I,0};

ut = {0,1};

];

(* ,)

(* Horizontal Tangent *)
(, ,)

If[yderiv==O I[xderiv === Complexlnfinity,
un = {0,1};

ut = {1,0};

];

]];

(* *)

(* Return the unit tangent vector of the curve at the correct location on the *)

(* curve ,)

(* ,)
ut=utlSqrt[ut[[1]]'2+ut[[2]]'2];

ut /. { curvet -> thevalueofcurvet }

);

NASA/TM--1999-209182

27,5

(* *)

(* This procedure creates a single equation for each fill in a given *)

(* 2 by 2 stencil. These equations are evaluated then at each time step *)

(* to solve for the fills. *)

(* *)

(* It needs the mapped location for each fill point, and the surface normal *)

(* and tangent at that point *)

(* *)

computesolutionsforall[standardmatrixpositionsin2by2grid,

standardphysicalpositionsin2by2grid,

physicalpositionsin2by2grid_,

normalsin2by2grid_,

tangentsin2by2grid_]:=(

Print["In computesolutionsforall

__,standardmatrixP_siti_nsin2by2grid_standardphysicalp_siti_nsin2by2grid,physical

positionsin2by2grid,normalsin2by2grid];

Clear[cp,p,dpn,x,y,lhs,rhs];

(* *)

(* Get the global physical coordinates of the center of the standard *)

(* 2 by 2 stencil *)

(* Will use it to convert global physical coordinates to local physical *)

(* coordinates *)

(* *)

centerphysicalx=standardphysicalpositionsin2by2grid[[l,l]] [[I]] +(deltax/2);

centerphysicaly=standardphysicalpositionsin2by2grid[[1,1]] [[2]]-(deltay/2);

maxind=csize(degree+l)-l;

i=standardmatrixicoord;

j=standardmatrixjcoord;

(,,)

(* Mathmetica Matrix Indexing *)

(* *)
(* *)

(* (i ,j) (i ,j+_) *)

(* (i+1,3) (i+l,j+l) *)

(,,)

(* *)

(* Osculatory Formulation of Interpolant *)

(* *)
(* *)

(* The array indeces for FORTRAN or the matrix indeces for Mathematica *)

(* of the particular interior points that are required *)

(* *)

(* Find which points are known and unknown, the unknown points become the *)

(* unknown interpolation coefficients/variables to be solved later. *)

(, ..,)

(* This can be either a variable or a data element from the grid *)

(* *)

Clear["pvari*","uvari*","vvari*"];

NASA/TM-- 1999-209182

276

(* *)
(* Assign a dummy variable to each Hermitian grid point element that will *)

(* remain this dummy variable if its undefined or will be reassigned if it *)

(* has a definition or is known *)

(* *)
(*

pvarordata=Table [Table [Table [Table [Symbol ["pvari"<>ToString [i] <>"j"<>ToString [j]

<> "dx" <>ToStr ing [dx] <>"dy" <>ToStr ing [dy]] ,{dy, O, degree}], {dx, O, degree}] ,{j, I, 2}]

,{i, 1,2}] ;

uvarordat a=Table [Table [Table [Table [Symbol ["uvari"<>ToString [i] <>"j "<>ToString [j]

<>"dx"<>ToString [dx] <>"dy" <>ToString [dy]] ,{dy, O, degree}], {dx, O, degree}], {j, I, 2}]

,{i,I,2}] ;

vvarordata=Table [Table [Table [Table [Symbol ["vvari" <>ToString [i] <>"j "<>ToString [j]

<>"dx" <>ToString [dx] <>"dy"<>ToString [dy]] ,{dy, O, degree}] ,{dx, O, degree}] ,{j, I, 2}1

,{i,i,2}];
*)

Do [Do [Do [Do [

pvarordat a [i, j, dx+ I, dy+ I] =Symbol ["pvari" <>ToString [i] <>"j "<>ToSt r ing [j]<>"dx" <>T

oString [dx] <>"dy"<>ToString [dy]] ;

uvarordat a [i, j, dx+ I, dy+ 11 =Symbol ["uv ar i" <>ToStr ing [i] <> "j "<>ToStr ing [j]<> "dx"<>T

oString [dx] <>"dy"<>ToString [dy]] ;

vvarordata [i, j ,dx+1, dy+ I] =Symbol ["vvari"<>ToString [i] <>"j "<>ToString [j] <>"dx"<>T

oString [dx] <>"dy"<>ToString [dy]]

,{dy, O, degree}] ,{dx, 0 ,degree}] ,{j, I, 2}] ,{i, I, 2}] ;

(* *)

(* This will contain the list of unknown Hermitian data elements that needs *)

(* solved. *)

(* *)

variablelistp={};

variablelistu={};

variablelistv={};

(* *)

(* Loop through all four grid points in this stencil to determine interior *)

(* or fill. If interior, then all of its Hermitian data is already known *)

(* and simply needs assigned. Dr if a fill that has been recycled or filled *)

(* already then again simply assign this information now *)

(* *)
Do [Do [

st andardmatrixicoord=st andardmatrixpos it ions in2by2grid [[matrixict ,matrix jct]] [[i

]];

standardmatrixj coord=stalldardmatrixpos it ions in2by2grid [[matrix ict, matrixj ct]] [[2

]1;
(* *)

(* If this stencil point is an interior, then insert it into Lagrangian *)

(* Formulation *)

(* *)

(* Dr if a fill point is being considered as an interior point (ie. recycled) *)

(, ..,)

NASA/TM-- 1999-209182

277

If[thegrid[[standardmatrixicoord,standardmatrixjcoord]]==1 II
Length[arrowgrid[[standardmatrixicoord,standardmatrixjcoord]]]>2,

(* *)

(* The data is known so loop through all Hermitian data and assign it *)

(* *)
Do [Do [

_var_rdata[matrixict_matrixjct__dx+1__dy+_]=grid_[[standardmatrixic__rd_standard

matrixjcoord,ldx+1,1dy+l]];

uvar_rdata[matrixict_matri_jct__dx+1__dy+_]=gridu[[standardmatrixic__rd_standard

matrix]coord,ldx+1,1dy+1]];

vvar_rdata[matrixict_matri_jct__dx+___dy+_]=gridv[[standardma_rixic__rd_standard

matrixjcoord,ldx+1,1dy+I]]

,{ldx,O,degree}]

,{ldy,O,degree}]

(* *)

(* If this stencil point is a fill point, then assign a variable to it *)

(* This variable symbol will be used in the Solve step later *)

(* *)
Do[Do[

AppendTo[variablelistp,pvarordata[matrixict,matrixjct,ldx+l,ldy+1]];

AppendTo[variablelistu,uvarordata[matrixict,matrixjct,ldx+l,ldy+l]];

AppendTo[variablelistv,vvarordata[matrixict,matrix]ct,ldx+l,ldy+l]]

,{idx,O,degree}]

,{idy,O,degree}]

]

,{matrixict,l,2}]

,{matrixjct,l,2}];

(_

Print[variablelistp,variablelistu,variablelistv];

Print ["p [x, y] = ", InputForm [p [x, y]]] ;

wait=Input ["Press Enter"] ;

Print["u[x,y] = ",InputForm[u[x,y]]];

wait=Input ["Press Enter"] ;

Print ["v Ix,y] = ",InputFormIv Ix,y]]];

wait=Input ["Press Enter"] ;

*)

(* *)

(* Now need to substitute in the values for each fill point into the *)

(* boundary condition equations already formed. *)

(* Supply the normx, normy, x, y values for the mapped location of fill *)

(, ...,)

(* Loop through all four points in 2 by 2 stencil *)

NASA/TM--1999-209182

278

*)

pequationlist={};

uandvequationlist={};

Do[Do[

(* ,)

(* Pressure Wall Boundary Condition *)
(* *)

*)
(* The actual physical coordinates for either mapped fills or unmapped
(* interiors

(*

*)

*)

*)
xcoord=physicalpositionsin2by2grid[[matrixict,matrixjct]][[l]];

ycoord=physicalpositionsin2by2grid[[matrixict,matrixjct]][[2]];

(_ *)

(* The actual physical coordinates converted into local coordinates *)

(* ,)

xdiff=Abs[N[(xcoord-centerphysicalx)]];

ydiff=Abs[N[(ycoord-centerphysicaly)]];

If[centerphysicalx > xcoord, localxcoord=-xdiff, localxcoord=xdiff];

If[centerphysicaly > ycoord, localycoord=-ydiff, localycoord=ydiff];

(_ ... _)

(* The array indeces for FORTRAN or the matrix indeces for Mathematica *)

(* of the particular interior points that are required ,)

(* ,)

standardmatrixicoord=standardmatrixpositionsin2by2grid [[matrixict,matrixjct]] [[I
]];

standardmatrix3c__rd=standardmatrixp_siti_nsin2by2grid[[matrixict,matrixjct]][[2
]];

Print["normalsin2by2grid

",matrixict,matrixjct,normalsin2by2grid[[matrixict,matrixjct]]];
*)

(* *)

(* Using Osculatory Formulation, a set of equations for each fill,
(*

*)

*)

If[thegrid[[standardmatrixicoord,standarcLmatrix3coord]]==2 &_

Length[arrowgrid[[stsmdarcLmatrixicoord,standardmatrixjcoord]]]==2,
(*

Clear[normx,normy];

normx=normalsin2by2grid[[matrixict,matrixjct]][[l]];

normy=normalsin2by2grid[[matrixict,matrix3ct]][[2]];

*)

(*

NASA/TM--1999-209182

279

normx=normxtemp [matrixict ,matrixj ct] ;

normy=normyt emp [matrixict, matrixj ct] ;

*)

tangx=-normy;

tangy=normx;

*)

tangx=t angent sin2by2grid [[matrixict, matrixj ct]] [[i]] ;

tangy=tangents in2by2grid [[matrixict, matrixj ct]] [[2]] ;

*)

x=localxcoord;

y=localycoord;

*)

(_

x=xcoord2[matrixict,matrix3ct];

y=ycoord2[matrixict,matrixjct];

*)

(, *)

(* The normx,normy,x,y are now defined so form the set of equations required *)

(* for this fill point *)

(* *)

newderpntaulist=derpntaulist /. {x->localxcoord,y->localycoord,

normx->normalsin2by2grid[[matrixict,matrixjct]][[1]],

normy->normalsin2by2grid[[matrixict,matrixjct]][[2]],

tangx->-normalsin2by2grid[[matrixict,matrix]ct]] [[2]]

tangy->normalsin2by2grid[[matrixict,matrixjct]][[l]]}

newderuntaulist=deruntaulist /. {x->localxcoord,y->localycoord,

normx->normalsin2by2grid[[matrixict,matrixjct]][[l]],

normy->normalsin2by2grid[[matrixict,matrixjct]][[2]],

tangx->-normalsin2by2grid[[matrixict,matrix]ct]] [[2]]

tangy->normalsin2by2grid[[matrixict,matrixjct]][[l]]}

newdervntaulist=dervntaulist /. {x->localxcoord,y->localycoord,

normx->normalsin2by2grid[[matrixict,matrix]ct]][[1]],

normy->normalsin2by2grid[[matrixict,matrixjct]][[2]],

tangx->-normalsin2by2grid[[matrixict,matrixjct]] [[2]]

tangy->normalsin2by2grid[[matrixict,matrix]ct]][[l]]}

Print["Using fill equations at localxcoord and localycoord :",localxcoord,

", localycoord," with normal (",normx,normy,")"];

AppendTo[pequationlist,newderpntaulist];

AppendTo[uandvequationlist,newderuntaulist];

AppendTo[uandvequationlist,newdervntaulist];

]

,{matrixict,l,2}]

" and

NASA/TM--1999-209182

280

,{matrixjct, 1,2}] ;

(____)

(* p7 p8 p9 *)

(* p4 p5 p6 *) (* Point location definition *)

(* pl p2 p3 *)

(************)
Clear[h,i,j,cp,cu,cv];

maxind=csize(degree+1)-1;

pvariables=Flatten[variablelistp];

uandvvariables=Flatten[{variablelistu,variablelistv}];

pequationlist=Flatten[pequationlist];

uandvequationlist=Flatten[uandvequationlist];

(* ,)
(* Solve for all of the spatial interpolant coefficients *)

pmatvec=LinearEquationsToMatrices [pequationlist, pvariables] ;

pmatrix=pmatvec [[I]] ;

prhs=pmatvec [[2]] ;

uandvmatvec=LinearEquationsToMatrices [uandvequationlist, uandvvariables] ;

uandvmatrix=uandvmatvec [[I]] ;

uandvrhs=uandvmatvec [[2]] ;

(_

wait=Input ["Wait I"] ;

,)

psings=Flatten [SingularValues [pmatrix]];

uandvsings=Flatten [SingularValues [uandvmatrix]] ;

pconditionnumber=Max [psings]/Min [psings] ;

uandvcondit ionnumber=Max [uandvsings]/Min [uandvsings] ;

pdet=Det [pmatrix] ;

uandvdet=Det [uandvmatrix] ;

Print ["P Matrix Condition #: ",pconditionnumber, °' and determinant :",pdet] ;

Print ["UandV Matrix Condit ion # :" ,uandvcondit ionnumber," and determinant

:" ,uandvdet] ;

*)

(* ,)

(* The vector of coefficients *)

(* *)
(*

pcoef=LinearSolve [pmatrix, prhs] ;

uandvcoef=LinearSolve [uandvmatrix, uandvrhs] ;

*)

(* *)

(* Find inverse of p matrix, handles poorly conditioned systems better than *)

(* linearsolve ,)

NASA/TM-- 1999-209182

281

(* *)

(*

wait=Input["Wait2"];
*)

(*

pinvmatrix=Inverse[pmatrix];

pcoef=Collect[pinvmatrix . prhs,pressure[.......]];

*)

(*

pcoef=LinearSolve[pmatrix,prhs];

*)

pcoef=solvesystemincnofc[pmatrix,prhs];

(* *)

(* Find Inverse of uandv matrix *)

(* *)

(*

uandvinvmatrix=Inverse[uandvmatrix];

uandvcoef=Collect[uandvinvmatrix .

uandvrhs,{uvelocity[.......],vvelocity[.......]}];

*)

(*

uandvcoef=LinearSolve[uandvmatrix,uandvrhs];

*)

uandvcoef=solvesystemincnofc[uandvmatrix,uandvrhs];

Clear[aside,bside];

makeequal[aside_,bside_]:= aside=bside;
(* *)

(* Set the p coefficients with solution *)

(.)

ppairs = {pvariables, pcoef};

Apply[makeequal,ppairs];

(* *)

(* Set the u and v coefficients with solution *)

(* *)

uandvpairs : {uandvvariables, uandvcoef};

Apply[makeequal,uandvpairs];

(. *)

(*Produce equation for each fill point, so that it may be filled at each *)

(* time step *)
(* *)

(* the equations will be absolute and in terms of matrix coordinates *)

(,.. .)

(*

solutionmatrix=Table[{O,O,O},{ii,1,2},{j],l,2}];

*)

s__uti_nmatrix_Tab_e[Tab_e[Tab_e[Tab_e[Tab_e[_,{dy,_,degree}],{dx,__degree}],{va

NASA/TM-- 1999-209182

282

rct, i ,3}] ,{ii, 1,2}] ,{jj,1,2}] ;

Do [Do [

Do [Do [

(* *)

(* The unmapped standard physical location of a typical 2 by 2 stencil *)

(* ,)

standardxcoord=standardphysicalpositionsin2by2grid[[matrixi,matrixj]][[1]];

standardycoord=standardphysicalpositionsin2by2grid[[matrixi,matrixj]][[2]];

localphysicalx=(standardxcoord-centerphysicalx);

localphysicaly=(standardycoord-centerphysicaly);

(* ,)

(* The p solutions for all derivatives *)

(* ,)

newsymbolp=Symbol ["pvari"<>ToString [matrixi] <>"j "<>ToString [matrixj] <>"dx"<>ToSt

ring [idx] <>"dy"<>ToString [idy]] ;

solut ionmat rix [[matrixi ,matrixj ,i, idx+ 1, idy+1]] =

pvarordata[matrixi,matrixj,ldx+1,1dy+1];
(*

newsymbolp;

Simplify[D[p[x,y],{x,ldx},{y,ldy}] /.

{x-> localphysicalx, y-> localphysicaly}];

*)

(* ,)

(* The u solutions for all derivatives *)

(* ,)

newsymb__u_Symb__[__uva_i__<>T_String[matrixi]<>_'j__<>T_String[matrixj]<>__dx__<>T_St

ring[ldx]<>"dy"<>ToString[ldy]];

solutionmatrix[[matrixi,matrixj,2,1dx+i,ldy+l]]=

uvarordata[matrixi,matrixj,ldx+1,1dy+1];

(*

newsymbolu;

Simplify[D[u[x,y],{x,ldx},{y,ldy}] /.

{x-> localphysicalx, y-> localphysicaly}];
*)

(* ,)

(* The v solutions for all derivatives *)

(* ,)

neWsymb__v=Symb__[__vvari__<>T__tring[matrixi]<>__j__<>T_String[matrixj]<>__dx__<>T_St

ring[idx]<>"dy"<>ToString[idy]];

solutionmatrix[[matrixi,matrix3,3,1dx+1,1dy+1]]=

vvarordata[matrixi,matrixj,ldx+l,ldy+1];
(*

newsymbolv;

Simplify[D[v[x,y],{x,ldx},{y,ldy}] /.

{x-> localphysicalx, y-> localphysicaly}];

*)

,{idx,O,degree}]

,{idy,O,degree}]

NASA/TM-- 1999-209182

283

,{matrixi,l,2}]

,{matrix3,1,2}];

Clear[x,y];

solut ionmatrix

);

(* *)

(* This procedure creates a single equation for each fill in a given 2 by 2 *)

(* stencil *)

(* These equations are evaluated then at each time step to solve for the *)

(* fills. *)

(* *)
(* It needs the mapped location for each fill point, and the surface normal *)

(* at that point *)

(* And the surface tangent at that point *)

(* *)

(* This procedure will scan entire grid looking for fills *)

(* And assigning arrows to them *)

(* *)

definearrows2:= (

(* *)

(* Get list of fills locations sorted according to number of fills in its *)

(* spatial interpolation stencil. *)

(* Will contain only the corners of the stencils *)

(, ..,)

fillposlist=minimizeboundary2;

(* *)

(* Loop through all the fill points, in the correct order of course *)

(* *)

While [Length [f illposlist] >0,

(* *)

(* This is the location of the fill point in matrix coordinates *)

(* *)

matrixi=fillposlist [[1]] [[I]] ;

matrix3=fillposlist [[1]] [[2]] ;

quadtouse=fillposlist [[1]] [[3]] ;

Print ["Working on ",matrixi, " ",matrix3, " ", quadtouse] ;

(* Get the 7 by 7 stencil with the fill in the center *)

(* *)

NASA/TM--1999-209182

284

stencil7byT=SubMatrix[thegrid,{matrixi-3,matrix3-3},{7,7}];

(* *)

(* Will use 4 different mapping algorithms, depends upon quadrant in use *)

(* Need to insure stencil expands for CFL stability ,)

(* ,)

themapping=getmapping[stencil7by7,quadtouse];

If[Not[mappingsuccessful],

Print["No mapping found at ",matrixi," ",matrixj];

Print["Later let code try to use another neighboring stencil for mapping"];

Quit;

3;

(* ,)

(* Get list of fill points that are solved by this 2 by 2 system *)

(* ,)

listofdonefills=computedonefills[matrixi,matrix3,stencilTbyT,quadtouse];

(* .)

(* Those fills not already in correctfillordering but should be now *)

(* ,)
undonelistofdonefills =

IntegerPart[Complement[listofdonefills,correctfillordering]];

AppendTo[correctfillordering,undonelistofdonefills];

correctfillordering=IntegerPart[Partition[Flatten[correctfillordering],2]];

(* *)

(* Need to remove from dolist those fills that are solved with this 2 by 2

(* spat. int.

(*

*)

*)

*)
Do[

f illposlist=DeleteCases [fillposlist, {Int egerPart [listofdonefills [[ct]] [[i]]] ,

IntegerPart [listofdonefills [[ct]] [[2]]] ,m_}] ;

,{ct, I, Length [listofdonef ills] }] ;

* *)

(* assign the mapping to arrowgrid *)

(* ,)

If[quadtouse==1,toplefti=matrixi; topleft3=matrixj];

If[quadtouse==2,toplefti=matrixi-1; topleftj=matrix3];

If[quadtouse==3,toplefti=matrixi-1; topleftj=matrix3-1];

If[quadtouse==4,toplefti=matrixi; topleftj=matrix3-1];

* ... ,)

(* If no arrow assigned, then assign it, otherwise use current arrow instead *)

(* And recycle the fill data by changing its arrow to {0,0} ,)

(* To remove instability ,)

(, ... ,)

NASA/TM--1999-209182

285

Do[Do[

If[Length[arrowgrid[[toplefti+iii,topleftj+jjj]]]==1,

AppendTo[arrowgrid[[toplefti+iii,topleftj+3jj]],

themapping[[iii+i,jjj+1]]],

(* *)

(* If already has an arrow, consider it an interior point for this stencil *)
(* Add a {0,0} in third position to indicate it is now a recycled fill point *)

(* Can count the number of {0,0} in this list to see how many times it is *)

(* recycled *)

(* *)

AppendTo [arrowgrid [[topleft i+iii, topleftj +jjj]], {0,0}] ;

];

,{iii,O, I}3

,{jjj,o,l}] ;

Print["toplefti = ",toplefti,topleftj,themapping];

*)

AppendTo[topleftlist,{toplefti,topleftj}];

(* *)

(* Now assign fill solutions at these points, *)

(* need to get boundary intersection and normals *)

(* first. Will use the global grid coordinates just determined, *)

(* and the matrix of arrow *)

(* directions in correctlyplacedarrows, if the grid point is an interior, *)

(* do not assign it *)

(* if the grid point is already an assigned fill point, do not reassign it *)

(_¢ ... *)

(_

the2by2s__uti_nsmatrix=get2by2s__uti_nmatri_[t_p_efti_t___eftj_c_rrect_yp_acedar

rows];

*)

the2by2solutionsmatrix=get2by2solutionmatrix[toplefti,topleftj,themapping];

(_

Print["the2by2solutionsmatrix=",the2by2solutionsmatrix];

*)

(*

te=Input["Press Enter"];

(* *)

(* Only place a solution for a fill if it is undefined, *)

(* this way the first stencil solution *)

(* that applies to a fill is used only. *)
(. .. .)

Do[Do[

NASA/TM-- 1999-209182

286

Idx=O;idy=O;

*)

Do[Do[

If[fillsolutiongrid[[toplefti+iii-l,topleftj+jjj-l,l,ldx+l,ldy+l]]==,,U-,

(* *)

(* For now use no derivative data *)

(* *)

(, ,)

(* P DATA *)

(, ,)

fi__s__uti_ngrid[[t____fti+iii-1_t___eftj+jjj-1_1__dx+1__dy+1]]_Ch__[the2by2s__u

tionsmatrix[[iii,jjj,l,ldx+1,1dy+1]]];

(, ,)

(* U DATA *)

(,)

fi__s__uti_ngrid[[t___efti+iii-__t___eftj+jjj-1_2__d_+___dy+_]]__h__[the2by2s__u

tionsmatrix[[iii,jjj,2,1dx+1,1dy+1]]];

(, ,)

(* V DATA *)

(, ,)

fi_s_uti_ngrid[[t_P_efti+iii-_t_P_eftj+jjj-1_3_dx+_dy+_]]_Ch_P[the2by2s_u

tionsmatrix[[iii,jj],3,1dx+1,1dy+1]]]]

,{ldx,O,degree}]

,{ldy,O,degree}]

,{iii,l,2}]

,{jjj,l,2}] ;

];

(* ,)

(* Create the list of fills that are not needed and should not be included *)

(* in error calculations. ,)

(* ,)

ignorelist=Complement[Position[thegrid,2],correctfillordering]

);

(* This procedure will return a set of 4 vectors showing the arrow or *)

(* direction for each of the 4 grid points to be mapped to. *)

(* If they are an interior point ,)

(* they do not get mapped, so assigned a none or {0,0} vector *)

(* ,)

getmapping[the7by7mat_,lquadtouse_]:=(

17by7mat=the7by7mat;

mappingsuccessful=False;

plnotfound=False;

p2notfound=False;

p3notfound=False;

NASA/TM--1999-209182

2_7

p4notfound=False;

(* *)

(* Generate all of the possible locations to map to in local coordinates *)

(* centered at the grid point being mapped *)

(* *)

direct ionlist ={} ;

Do [Do [

AppendTo [directionlist, {N [Sqrt [ict _2+j ct _2]] ,ict, jct}]

,{ict,-2,2}]

,{3ct,-2,2}] ;

directionlist=Complement[directionlist,{{O,O,O}}];

(* *)

(* Each of the 4 grid points is only allowed to be mapped in a way *)

(* that expands the stencil for CFL stability *)

(* *)

pldirectionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x<=O &_ y>=O]];

p2directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x<=O _ y<=O]];

p3directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x>=O _& y<=O]];

p4directionlist=Sort[DeleteCases[directionlist,{m_,x_,y_} /; x>=O _& y>=O]];

(* *)

(* Each of the 4 grid points needs to find the first B it can using its *)

(* directionlist which is presorted to minimize distance *)

(* *)

, .. *)

(* Find where the topleft of the 2 by 2 stencil is in relation to the *)

(* 7 by 7 stencil. *)

(* *)

If[lquadtouse==1, matrixtoplefti=4; matrixtopleft3=4];

If[lquadtouse==2, matrixtoplefti=3; matrixtopleft]=4];

If[lquadtouse==3, matrixtoplefti=3; matrixtopleftj=3];

If[lquadtouse==4, matrixtoplefti=4; matrixtopleft3=3];

(* *)

(* Change the I to a 5 if inside the 2 by 2 stencil *)

(* *)

Do[Do[

If[17by7mat[[matrixtoplefti+iict,matrixtopleftj+jjct]]==l,

iTbyZmat[[matrixtoplefti+iict,matrixtopleftj+jjct]]=5];

,{iict,O,1}]

,{jjct,O,l}] ;

(* *)

(* p3 p2 *)

(* p4 pl *)

NASA/TM-- 1999-209182

588

(* MAP P1 *)

(* *)

(* Find the first B to map to using the ordered direction list *)

(* *)

p1dirct=l;

p1={0,0};

p11oci=matrixtoplefti+l;

pllocj=matrixtopleftj+1;

If[17byTmat[[plloci,pllocj]]==2,

plnotfound=True;

(* *)

(* Loop through all permissible directions until a suitable map is found *)

(* *)

While [plnotfound _& pldirct<=Length [pldirect ionlist],

mag =pldirectionlist [[pldirct]] [[I]] ;

xoffs et=pldirect ionlist [[pldirct]] [[2]] ;

yoffs et=pldirect ionlist [[p1dirct]] [[3]] ;

row=Length [Cases [17byTmat [[plloci-yoffset]], 5]] ;

column=Length [Cases [Map [# [[p1 loci +xoff set]] _, 17by7mat], 5]] ;

(* *)

(* Is the offseted grid point a boundary point and *)

(* Test to be sure that no more than one other grid point is assigned to the *)

(* row or column *)

(* *)

If[17byTmat[[plloci-yoffset,pllocj+xoffset]]==0 && row<=l &_ column<=1,

plnot found=False ;

(* *>

(* Define normalized arrow direction *)

(, ,)

pl={xoffset,yoffset}/mag;

(* *)

(* Assign a 5 indicating a mapping to this location *)

(* *)

17byTmat [[plloc i-yof fset, pllocj +xoff set]]=5 ;

];

pldirct++ ;

];

];

:::)

(* MAP P2 *)

(* *)

(* Find the first B to map to using the ordered direction list *)

(* *)

p2dirct=l;

p2={O,0};

p21oci=matrixtoplefti;

p21ocj=matrixtopleftj+1;

If[17byTmat[[p21oci,p21ocj]]==2,

p2notfound=True;

(, ... ,>

(* Loop through all permissible directions until a suitable map is found *)

NASA/TM-- 1999-209182

289

,)

While [p2notfound &_ p2dirct<=Length [p2directionlist],

mag =p2directionlist [[p2dirct]] [[I]] ;

xoffs et =p2direct ionlist [[p2dirct]] [[2]] ;

yoffset=p2direct ionlist [[p2dirct]] [[3]] ;

row:Length [Cas es [17byTmat [[p21oci-yoffs et]], 5]] ;

column=Length [Cases [Map [# [[p21ocj +xoff set]]&, 17byTmat] ,5]] ;

(* *)

(* Is the offseted grid point a boundary point and *)

(* Test to be sure that no more than one other grid point is assigned to the *)

(* row or column *)

(* *)

If[17by7maZ[[p21oci-yoffset,p21ocj+xoffset]]==O _ row<=l _ column<=1,

p2notf ound=False ;

(* *)
(* Define normalized arrow direction *)

(* *)

p2={xof f set, yof fset }/mag ;

(* *)

(* Assign a 5 indicating a mapping to this location *)

(* *)

17byTmat [[p21oci-yoffset ,p21ocj +xoff set]]=5 ;

];

p2dirct++ ;

];

];

(* MAP P3 *)

(* *)

(* Find the first B to map to using the ordered direction list *)

(* *)

p3dirct=1;

p3={O,O};

p31oci=matrixtoplefti;

p31ocj=matrixtopleftj;

If[17byTmat[[p31oci,p31ocj]]==2,

p3notfound=True;

(* *)

(* Loop through all permissible directions until a suitable map is found *)

(* *)

While [p3notfound a_ p3dirct<:Length [p3directionlist],

mag =p3directionlist [[p3dirct]] [[i]] ;

xoffset=p3directionlist [[p3dirct]] [[2]] ;

yoff set =p3direct ionlist [[p3dirct]] [[3]] ;

row=Length [Cases [17byTmat [[p31oci-yoffset]] ,5]] ;

column=Length [Cases [Map [# [[p31ocj +xoffset]]&, 17by7mat], 5]] ;

(* *)

(* Is the offseted grid point a boundary point and *)

(* Test to be sure that no more than one other grid point is assigned to the *)

(* row or column *)

NASA/TM-- 1999-209182

29O

(* *)
If[17by7mat[[p31oci-yoffset,p31ocj+xoffset]]==O &_ row<=l _ column<=l,

p3notfound=False;

(* ,)

(* Define normalized arrow direction *)

(* ,)

p3={xoffset,yoffset}/mag;

(* ,)

(* Assign a 5 indicating a mapping to this location *)

(* ,)

17byTmat[[p31oci-yoffset,p31ocj+xoffset]]=5;

3;

p3dirct++;

];,

3;

(* MAP P4 *)

(* ,)

(* Find the first B to map to using the ordered direction list *)

(* ,)

p4dirct=1;

p4={O,O};

p41oci=matrixtoplefti+l;

p41ocj=matrixtopleftj;

If[17byTmat[[p41oci,p41ocj]]==2,

p4notfound=True;

(* *)

(* Loop through all permissible directions until a suitable map is found *)

(* ,)

While [p4notfound _& p4dirct<=Length [p4directionlist],

mag =p4directionlist[[p4dirct]] [[13] ;

xoffset=p4directionlist [[p4dirct]] [[233 ;

yoffset=p4direct ionlist [[p4dirct]] [[3]] ;

row=Length [Cases [iTbyTmat [[p41oci-yoff s st]] ,5]] ;

column=Length [Cases [Map [# [[p41ocj +xoff set]] _, 17byTmat] ,5]] ;

(* *)

(* Is the offseted grid point a boundary point and ,)

(* Test to be sure that no more than one other grid point is assigned to the *)

(* row or column ,)

(* ,)

If[17byTmat[[p41oci-yoffset,p41ocj+xoffset]]==O _a row<=1 &_ column<=1,

p4notfound=False;

(, ,)

(* Define normalized arrow direction *)

(, ,)

p4={xoffset,yoffset}/mag;

(* ,)

(* Assign a 5 indicating a mapping to this location *)

(* ,)

17by7mat[[p41oci-yoffset,p41ocj+xoffset]]=5;

NASA/TM--1999-209182

291

];

p4dirct++;

];

];

notfoundlist={plnotfound,p2notfound,p3notfound,p4notfound};

If[Length[Cases[notfoundlist,True]]==O,mappingsuccessful=True];

If[plnotfound,Print["Did not find a mapping for pl"]];

If[p2notfound,Print["Did not find a mapping for p2"]];

If[p3notfound,Print["Did not find a mapping for p3"]];

If[p4notfound,Print["Did not find a mapping for p4"]];

dirmat={{p3,p2},{p4,pl}};

dirmat

);

(* *)

(* This procedure will return a set of 9 vectors showing the arrow or direction *)

(* for each of the 9 grid points to be mapped to. If they are an interior point *)

(* they do not get mapped, so assigned a none or {0,0} vector *)

(* *)

s8mapping[s8matrix_]:=(

Print["Calling s8mapping"];

(* p7 p8 p9 *)

(* p4 p5 p6 *)

(* pl p2 p3 *)

(, ,)

(* Set of all normalized vector directions *)

(* *)

none = {0,0};

up = {0,1};

upright : {11Sqrt[2],l/Sqrt[2]};

right = {I,0};

downright = {I/Sqrt[2],-I/Sqrt[2]};

down = 40,-I};

downleft = {-1/Sqrt[2],-I/Sqrt[2]};

left = 4-1,0};

upleft = 4-1/Sqrt[2],I/Sqrt[2]};

(* Try a 22.5 instead of 45 slope *)

(*
none = 40,0};

up = {0,I};

upright = {2/Sqrt[5],I/Sqrt[5]};

right = 41,0};

downright = {2/Sqrt[5],-1/Sqrt[5]};

NASA/TM-- 1999-209182

292

down = {0,-I};

downleft : {-21Sqrt[5],-I/Sqrt[5]};

left = {-1,0};

upleft = {-2/Sqrt[5],l/Sqrt[5]};
*)

(* ,)

(* By s8 assumption, these do not vary *)

(* *)

(* If not matching cases it is important to check for undefined *)

(* Unless a prescreening with stencil constraint tree was done already *)
pl=undefined;

p2=undefined;

p3=none;

p4=undefined;

pS=none;

p6=undefined;

pT=upleft;

p8=undefined;

pg=undefined;

(* *)

(* Non-Double Fill Cases with fill using 5 by 5 info. only w/s8 modified
(* assumption
(*

*)

,)

*)

If[s8matrix[[3,4]]==1 && s8matrix[[3,5]]==2 && s8matrix[[4,5]]==2,

p6=upright; p8=none; pg=upright];

(* 0 *)

(* *)

(* o o *)

If[s8matrix[[4,3]]==1 && s8matrix[[5,3]]==2 &a s8matrix[[5,4]]==2,

p1=downleft; p2=downleft; p4=none];

(* *)

(* Non-Double Fill Cases with interior using 5 by 5 info. only w/s8 modified *)
(* assumption ,)

(* ,)
(* 0 . 0 *)

(* . *)

If[s8matrix[[3,4]]==l && s8matrix[[3,5]]==2 && s8matrix[[4,5]]==l,

p6=none; p8=none; pg=upright];

(* 0 0 . *)

(* *)

If[s8matrix[[3,4]]==2 && s8matrix[[3,5]]==l && s8matrix[[4,5]]==l,

p6:none; p8:upleft; pg:none];

(* 0 . *)

NASA/TM--1999-209182

293

(* *)

If[s8matrix[[3,4]]==l &_ s8matrix[[3,5]]==l &_ s8matrix[[4,5]]==l,

p6=none; pS=none; pP=none] ;

(* 0 $)

(* *)

(* o . *)

If[s8matrix[[4,3]]==1 _z_ s8matrix[[5,3]]==2 _ s8matrix[[5,4]]==l,

pl=downleft; p2=none; p4=none];

(* 0 *)

(* 0 *)
(* *)

If[s8matrix[[4,3]]==2 &_ sSmatrix[[5,3]]==1 && sSmatrix[[5,4]]==1,

p1=none; p2=none; p4=upleft] ;

(* 0 *)

(* *)
(* *)

If[s8matrix[[4,3]]==1 _ s8matrix[[5,3]]==l &_ s8matrix[[5,4]]==l,

pl=none; p2=none; p4=none];

(* *)

(* Double Fill with interior and fill cases using 5by5 info. only with modified*)

(* sS *)

(* Here the 2nd row of 5 by 5 affects mapping. *)

(, ...,)

(* ? ? ? *)

(* o o o *)

(* Z *)

If[s8matrix[[3,4]]==2 && sSmatrix[[3,5]]==2 ,

(* X X B *)

If[s8matrix[[2,3]]!=O _ s8matrix[[2,4]]!=O a_ s8matrix[[2,5]]==O,

p8=up; pP=up];

(* B X B *)

If[s8matrix[[2,3]]==O && sSmatrix[[2,4]]!=O a& s8matrix[[2,5]]==O,

p8=upleft; pP=up];

(* B X X *)

If[s8matrix[[2,3]]==O && s8matrix[[2,4]] !=0 a& s8matrix[[2,5]] !=0,

p8=upleft; pP=upright];

(* X B X *)

If[sSmatrix[[2,3]] !=0 _ sSmatrix[[2,4]]==O &_ s8matrix[[2,5]]!=O,

pS=upleft; pP=upleft];

NASA/TM--1999-209182

294

(* X B B *)

If[s8matrix[[2,3]]!=O _& s8matrix[[2,4]]==O _ s8matrix[[2,5]]==O,

pS=up; pg=up] ;

(* B B X *)

If[s8matrix[[2,3]]==O &_ s8matrix[[2,4]]==O _ s8matrix[[2,5]]!=O,

p8=upleft; pg=upleft];

(* B B B *)

If[sSmatrix[[2,3]]==O _& sSmatrix[[2,4]]==O && sSmatrix[[2,5]]==O,

p7=up; p8=up; pg=up] ;

(* Fill or Int p6 *)

If [s8matrix [[4,5]]==i,p6=none, p6=upright] ;

];

(* *)

(* Do left side *)

(, ,)

(* ? o *)

(* ? o *)

(* ? o . *)

If[s8matrix[[4,3]]==2 &_ s8matrix[[5,3]]==2 ,

(* X *)
(* X *)

(* B *)

If[s8matrix[[3,2]] !=0 && s8matrix[[4,2]]!=O && s8matrix[[5,2]]==O,

p1=left; p4=lef_];

(* B *)

(* X *)
(* B *)

If[s8matrix[[3,2]]==O && s8matrix[[4,2]]!=O && s8matrix[[5,2]]==O,

pl=left; p4=upleft];

(* B *)
(* X *)
(* X *)

If[s8matrix[[3,2]]==O && s8matrix[[4,2]]!=O _ s8matrix[[5,2]]!=O,

pl=downleft; p4=upleft];

(* X *)
(* B *)

(* X *)

If[s8matrix[[3,2]] !=0 && s8matrix[[4,2]]==O && s8matrix[[5,2]]!=O,

NASA/TM-- 1999-209182

295

pl=uple_t; p4=upleft];

(* X *)
(* B *)
(* B *)

If[s8matrix[[3,2]J!=O &a s8matrix[[4,2]]==O _ s8matrix[[5,2]]==O,

pl=left; p4=left];

(* B *)

(* B *)

(* X *)

If[s8matrix[[3,2]]==O _ s8matrix[[4,2J]==O a& s8matrix[[5,2]]!=O,

p1=upleft; p4=uplegt];

(* B *)

(* B *)

(* B *)

If[s8matrix[[3,2]]==O _& s8matrix[[4,2]]:=O _ sSmatrix[[5,2]]==O,

pl=left; p4=left; pT=left];

(* Fill or Int p6 *)

If[s8matrix[[5,4]J==t,p2=none,p2=downleft];

];

dirmat:{{p7,p8,p9},{p4,p5,p6},{pl,p2,p3}};

dirmat

);

,)

(* This procedure will compute the set of Sills that are solved

(* simultaneously using this 3 by 3 s8 stencil,

(* needs back rotated to fit into global grid coordinates

(*

,)
,)
,)
,)

computedonefills[centerfilli_,centerfillj_,the7by7_,lquadtouse_]:=(

(* *)

(* the center of 7 by 7 is by definition a fill, does not need tested, *)

(* add to list *)

(, ...,)

donelist={{cent err illi, centerfillj }} ;

(* Test quadt for fills *)

If [lquadtouse==l,

If [theTby7 [[5,4J J==2, AppendTo [donelist, {cent erfilli+1, centerfillj }]] ;

If [the7by7 [[5,5]]==2,AppendTo[donelist,{centerfilli+1 ,centerfillj+l}]] ;

If [the7by7 [[4,5J J ==2, AppendTo [donelist, {cent erfilli, centerfillj +l}J J ;

J;

NASA/TM--1999-209182

296

(* Test quad2 for fills *)

If[lquadtouse==2,

If[the7by7[[3,4]]==2,AppendTo[donelist,{centerfilli-l,centerfillj}]];

If[theTbyY[[3,5S]==2,AppendTo[donelist,{centerfilli-l,centerfillj+1}]];

If[the7by7[[4,5S]==2,AppendTo[donelist,{centerfilli,centerfillj+1}]];

];

(* Test quadl for fills *)

If[lquadtouse==3,

If[theYby7[[3,3JJ==2,AppendTo[donelist,{centerfilli-1,centerfillj-l}]];

If[the7byT[[4,S]]==2,AppendTo[donelist,{centerfilli ,centerfillj-1}]];

If[theZbyT[[S,4]]==2,AppendTo[donelist,{centerfilli-l,centerfillj }]];

];

(* Test quadl for fills *)

If[lquadtouse==4,

If[theTby7[[4,BS]==2,AppendTo[donelist,{centerfilli ,centerfillj-1}]];

If[theTbyT[[5,3]S==2,AppendTo[donelist,{centerfilli+1,centerfillj-1}]];

If[theYbyT[[5,4]S==2,AppendTo[donelist,{centerfilli+1,centerfillj }]];
];

IntegerPart[donelist]

);

(* .)

(* This procedure will return a matrix of solutions for the fills with *)

(* Nulls for interior grid points. It will convert the global matrix *)

(* coordinates to global physical coordinates .)

(* And then will find the intersection with a boundary, then compute the *)

(* normal vector to the .)

(* surface, Then call the spatial interpolator with all the mapping *)

(* points and normals to .)

(* find the solution for all the fill points in this particular 2 by 2 *)

(* stencil .)

(* ,)

get2by2solutionmatrix[topleftmatrixi_,topleftmatrixj_,correctlyplacedarrows_]:=
(

(,

Print["called get2by2solutionmatrix"];

*)

(* ,)

(* Convert the topleftmatrixi,j into grid coordinates *)

(, ...,)

topleftgridi = topleftmatrixj - im - I;

topleftgridj =-topleftmatrixi + im + I;

(* Define the 2 by 2 matrices corresponding to the tangents,normals *)

(* and actual physical location on the boundary that a fill is mapped to *)

(, ...,)

tangentsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];

NASAJTM-- 1999-209182

297

normalsin2by2grid=Table[Null,{iiii,1,2},{jjjj,l,2}];

physicalpositionsin2by2grid=Table[Null,{iiii,1,2},{jjjj,1,2}];

(* *)

(* Define the 2 by 2 matrices corresponding to the unmapped location in *)

(* global grid coordinates and global matrix coordinates *)

(* *)

standardphysicalpositionsin2by2grid=Table[Null,{iiii,l,2},{jjjj,l,2}];

standardmatrixpositionsin2by2grid=Table[Null,{iiii,1,2},{jjjj,l,2}];

(* *)

(* Loop through all 4 points in 2 by 2 stencil *)

(* *)

Do[Do[

(* *)

(* Find global physical location of this grid point in 2 by 2 stencil *)

(* *)

physicali=(topleftgridi+ict-l)*deltax;

physicalj=(topleftgridj-jct+1)*deltay;

(* *)

(* This is the matrix coordinate location of this stencil point *)

(* *)

standardmatrixi

standardmatrixj

(*

=(topleftmatrixi+ict-1);

=(topleftmatrixj+jct-l);
*)

(* Get the direction of the arrow for this grid point *)

(* *)

thearrowdirection=correctlyplacedarrows[[jct,ict]];

(* *)

(* Compute the intersection of this arrow with the defined geometry curves *)

(* If arrow is {0,0} it is an interior point, do not find intersection *)

(* *)

If[thearrowdirection!={0,0},

xf= physicali+ (t thearrowdirection[[1]]);

yf= physicalj+ (t thearrowdirection[[2]]);

tl=O;

t2=deltax Sqrt[2];

theline={xf,yf,tl,t2};

{{xc__rd_yc__rd},{xn_rm_yn_rm},{xtang,ytang}}_findinter_ecti_nandn_rma_andtangen

t[theline];

Print["Grid point ",physicali,",",physicalj," is mapped to

pt,normal,tang=",{{xcoord,ycoord},{xnorm,ynorm},{xtang,ytang}}];

normalsin2by2grid[[jct,ict]]={xnorm,ynorm};

tangentsin2by2grid[[3ct,ict]]={xtang,ytang};

standardmatrixpositionsin2by2grid[[ict,jct]]={standardmatrixi,standardmatrixj};

physicalpositionsin2by2grid[[jct,ict]]={xcoord,ycoord};

standardphysicalpositionsin2by2grid[[jct,ict]]={physicali,physical3};

(. .. .>

(* If its an interior point then return its physical coordinates as its *)

(* solution *)

(. .. .)

normalsin2by2grid[[jct,ict]]=Null;

NASA/TM-- 1999-2091 _2

298

tangentsin2by2grid[[jct,ict]]=Null;

standardmatrixpositionsin2by2grid[[ict,jct]]={standardmatrixi,standardmatrixj};

physicalpositionsin2by2grid[[jct,ict]]={physicali,physicalj};

standardphysicalpositionsin2by2grid[[jct,ict]]={physicali,physicalj};
]

,{ict,1,2}]

,{jct, 1,2}] ;

(* ,)
(* Now have position information and normal information to surface required *)

(* to form a 2 by 2 spatial interpolant. And the tangent information. *)

(* ,)

a__s__uti_nsin2by2grid_c_m_u_es__uti_nsf_ra__[standardmatrix__siti_nsin2by2grid_

standard_hysicalP_siti_nsin2by2grid_Physical__siti_nsin2by2grid_n_rmalsin2by2gri

d,tangentsin2by2grid];

allsolutionsin2by2grid

);

(* This procedure will test if theline intersects any of the specific curves *)

(* And return the curve coordinates and normal at the point of intersection *)

(* ,)

findintersectionandnormalandtangent [theline_] := (

(*

Print [" In f indint ers ect ionandnormalandtangent"] ;

*)

intersect=False ;

Do[

(* ,)

(* the x equation for parametrized curve *)

(* x=f(t), y=g(t), tstart <= t <= tend *)

(* ,)
curvexequation= listofcurves [[curvenumber]] [[I]] ;

curveyequation= listofcurves [[curvenumber]] [[2]] ;

curvet start = Iistof curves [[curvenumber]] [[3]] ;

curvetend= listofcurves [[curvenumber]] [[4]] ;

curvetmin=Min[curvetstart,curvetend];

curvetmax=Max[curvetstart,curvetend];

x2equation=theline[[l]];

y2equation=theline[[2]];

t2start= theline[[3]];

t2end = theline[[4]];

t2min=Min[t2start,t2end];

t2max=Max[t2start,t2end];

a__ts____ve[{_urvexequati_n__x2equati_n_curveyequati_n=_y2equati_n}_{t_curvet}];

Do[

NASA/TM--1999-209182

299

thecurvet=curvet/. Flatten[allts[[tct]]];

thelinet=t/. Flatten[allts[[tct]]];

If[((thecurvet >= curvetmin) && (thecurvet <= curvetmax) _

(thelinet >= t2min) _& (thelinet <= t2max)) ,

intersect=True;

xcoord=curvexequation /. {curvet->thecurvet};

ycoord=curveyequation /. {curvet->thecurvet};

{xnorm,ynorm} = computenormals[curvenumber,thecurvet];

{xtang,ytang} = computetangents[curvenumber,thecurvet];

]

,{tct,1,Length[allts]}]

,{curvenumber,l,Length[listofcurves]}];

intersectionpoint={xcoord,ycoord};

normalvector ={xnorm, ynorm };

tangentvector ={xtang, ytang };

{intersectionpoint, normalvector, tangentvector}

);

,)

(* This procedure will read a grid definition file written by a FORTRAN or

(* C code

(* the grid file consists of 0 = boundary, I = interior, 2 = needed fill,

(* 3 = unneeded fill

(*

,)
,)
.)
,)

,)

(* File is stored in column major ordering *)

(* *)

readgridproc := (

stmp=OpenRead["fort.4"];

(* *)

(* First item in file is size of Cartesian grid in one dimension *)

(* Is a square in 2D *)

(, ,)
im=gead[stmp];

(* *)

(* Second item in file is grid density per unit interval *)

(* *)

iun=Read[stmp];

(* *)

(* grid spacing *)

(* *)

deltax=I/iun;

deltay=deltax;

, *)

(* Set entire grid to 0, all boundary *)

(,,)

thegrid=Table [Table [0, {i, -ira,ira}],{j ,-ira,ira}];

arrowgrid=Table[Table[{{O,O}},{i,-im,im}],{j,-im,im}];

NASA/TM-- 1999-209182

300

(*

fillsolutiongrid=Table[Table[{"U","U","U"},{i,-im,im}],{j,-im,im}];
*)

(*

pdataPerGridPt=(degree+1)-2;

ulist={};

Do[AppendTo[ulist,"U"],{ct,1,pdataPerGridPt}];

*)

(*

udxdylist=Table[Table["U",{dx,O,degree}],{dy,O,degree}];

(* *)
(* Make a big list combining p,u, and v *)

(* ,)

bigulist={udxdylist,udxdylist,udxdylist};

fillsolutiongrid=Table[Table[bigulist,{i,-im,im}],{3,-im,im}];

*)

fi1_s__uti_ngrid_Tab1e[Tab1e[Tab_e[Tab_e[Tab1e["U"_{dy___degree_]_{dx___degree_]

,{ict,l,3}],{j,-im,im}],{i,-im,im}];

grid__Tab_e[Tab_e[Tab_e[Tab_e[_ressure[i+im+__j+im+__dx_dy]_{dy___degree}]_{dx__

,degree}]{3,-im,im}],{i,-im,im}];

gridu_Tab_e[Tab_e[Tab_e[Tab_e[uve__city[i+im+_,3+im+_,dx,dy]_{dy,_,degree}],{dx,

O,degree}]{],-im,im}],{i,-im,im}];

gridv_Tab_e[Tab_e[Tab_e[Tab_e[vve__city[i+im+_,]+im+_,dx,dy],{dy,_,degree}],{dx_

0,degree}]{3,-im,im}],{i,-im,im}];

(*

gridu=Table[Table[uvelocity[i+im+l,3+im+l],{j,-im,im}],{i,-im, im}];

gridv=Table[Table[vvelocity[i+im+l,j+im+l],{3,-im,im}],{i,-im,im}];
*)

(* ,)

(* Read entire grid definition into thegrid in matrix form *)

(* ,)
Do[Do[

thegrid[[matrixict,matrixjct]]=Read[stmp]

,{matrixict,l,im+im+l}]

,{matrix]ct,l,im+im+l}];

);

(* ,)

(* Draw a picture of fills, ints, B's, grid and curves *)

(, ...,)

drawgrid := (

correctedi[thisj_J:=im-thisj+l;

correctedj[thisi_]:=im+thisi+1;

alpha=theta;

picturelist={};

Do[Do[

thevalue=thegrid[[correctedi[j]]][[correctedj[i]]];

NASA/TM-- 1999-209182

301

physicali=i*deltax ;

phys ical3 =j *delt ay ;

If [thevalue== I, theobj ect=Disk [{phys icali, physical3 },. 03]] ;

If [thevalue==2, theob3 ect=Circle [{physical i, phys ical3 },. 03]] ;

If [thevalue==3, theob3 ect=Circle [{physicali, physical3 },. 01]] ;

If [thevalue==O, theob3 ect=Text ["B", {physicali, phys ical3 }, {0,0}]] ;

picturelist =Append [picturelist, theob3 ect]

,{i, -ira,im}]

,{j,-im,im}] ;

titlestring="Rotation Angle = "<>ToString[N[alpha]];

filestring="boxat"<>ToString[N[alpha]];

SetOptions[Display,ImageSize-> 72 * 8, ImageRotated->True];

_h_w[Graphics[{P_intSize[_._5]_picture_ist_{__intSize[._2]_P_int[{___}]}}]_g2_Di

s__ayFuncti_n->$Dis__ayFuncti_n_P__tLabe_->tit_estring_Axes->True_As_ectKati_->A

utomatic,GridLines->{ticklist,ticklist}];

);

buildcurves := (

If[Not[ValueQ[maxmemi]],

im=Input["Enter the maxim_ field size "];

im=maxmemi;

Print["Will use a global domain of size -",im,":",im,"'2"];

];

If [Not [ValueQ [maxiun]] ,

iun=Input["Enter the number of grid points per unit length"];

iun=maxiun;

];

If[Not[ValueQ[theta]],

theta=Input["Enter the rotation angle in Kadians for box "];

];

(*

im=7;

iun=4;

*)

(* *)

(* grid spacing *)

(,,)

deltax=I/iun;

deltay=deltax;

correctedi[thisj_]:=im-thisj+l;

correctedj[thisi]:=im+thisi+1;

(,,)

(* x=t, y=t'2, -I <= t <= I *)

(,,)

NASA/TM-- 1999-209182

302

Iine [1] :{Rot at e2D [{-I, -1}, N [theta], {0,0}], Rotat e2D [{ 1, -I}, N [thet a], {0,0}] } ;

line [2] ={Rotate2D [{ 1,-l},N[theta],{O,O}],Rotate2D[{l, 1},N[theta],{O,O}]};

iine [3] ={Rotat e2D [{ I, I}, N [theta], {0,0}], Rotat e2D [{-I, I}, N [theta], {0,0}] } ;

line [4]={Rotate2D[{-l, l},N[theta],{O,O}],Rotate2D[{-l,-l},N[theta],{O,O}]};

t icklist =Table [i, {i, -im*deltax, im*deltax, delt ax}] ;

(*

Show [Graphics [{Line [line [I]] ,Line [line [2]] ,Line [line [3]] ,Line [line [4]] ,{PointSiz

e [. 02], Point [{0,0}] }}] ,Axes->True, AspectRat io->Aut omat ic, GridLines->{t icklist, t i

cklist}] ;

*)

(* *)

(* Convert

(*

listofcurves={};

displaylist={};

Do[

xptl=line[linect][[1]][[1]];

yptl=line[linect][[l]][[2]];

xpt2=line [linect] [[2]] [[i]];

ypt2=line [linect] [[2]] [[2]];

(*

(* If line is not vertical, use x=t

(*

If[(xpt2-xptl)!=O,

slope=(ypt2-yptl)/(xpt2-xptl);

xf=curvet;

yf=yptl + slope (curvet - xptl);

t1=xptl;

t2=xpt2,

(_ Is Vertical _)

xf=xptl;

yf=curvet;

tl=yptl;

t2=ypt2];

thecurve={xf,yf,tl,t2};

AppendTo[listofcurves,thecurve];

lines to parametric curves *)

*)

*)

else use y=t _)

A__endT_[dis__ay_ist_ParametricP__t[{xf_yf}_{curvet_t1_t2}_Dis__ayFuncti_n->Iden

tity]]

,{linect,1,4}];

(* Do circle *)

(*

listofcurves={};

displaylist:{};

xf=curvet;

yf=Sqrt[l-curvet_2];

t1=-1;

NASA/TM--1999-209182

303

t2=l;

thecurve={xf,yf,tl,t2};

AppendTo[listofcurves,thecurve];

AppendT_[d_splaylist_ParametricPl_t_{xf,yf_,{curvet,t_t2},DisplayFuncti_n->Iden

tityJ] ;

xf=curvet;

yf=-Sqrt[l-curvetA2];

tl=-1;

t2=1;

thecurve={xf,yf,tl,t2};

AppendTo[listofcurves,thecurve];

Ap_endT_[dis_lay_ist,ParametricP__t[_xf,yf},{curvet,t_,t2}_Disp_ayFuncti_n->Iden

tity]] ;

*)

g2=Show[displaylist,AspectRatio->automatic,DisplayFunction->Identity];

Print["List of Parametric Curves ",listofcurves];

listofcenterpoints={{correctedi[O],correctedj[O]}};

listofcenterpoints={{O,O}};

);

drawentiregraph := (

(* *)

(* Draw entire graph with arrows added *)

(* *)

(* Put together the list of arrows into a picture *)

(* *)

plotarrowgrid={};

Do[Do[

Do[

pt={i*deltax,j*deltay};

vect=arrowgrid[[correctedi[j],corrected3[i]]][[arrowct]];

arrowvec={pt,vect};

AppendTo[plotarrowgrid,arrowvec];

,{arrowct,l,Length[arrowgrid[[correctedi[j],correctedj[i]]]]}]

,{i,-im,im}]

,{j,-im,is}] ;

(* *)

(* Store arrow picture in a variable *)

(* *)

g__ListP__tVect_rFie_d[___tarr_wgrid_Disp_ayF_ncti_n->Identity_Sca_eFact_r->de_t

ax];

(* Put together the list of boxes into a picture *)

(, ...,)

colorboxlist={};

boxlist={};

NASA/TM--1999-209182

304

grayboxlist={};

grayrectlist={};

stencilorderlist={};

(* *)
(* Start with a red box *)

(* *)
red=O;

green=O;

blue=l;

Do[

matrixi=topleftlist [[ct]] [[I]] ;

matrixj:topleftlist [[ct]] [[2]] ;

i= matrixj-im-l;

j=-matrixi+im+l;

pt1={i*deltax,j*deltay};

pt2={(i+1)*deltax,j*deltay};

pt3={(i+1)*deltax,(j-l)*deltay};

pt4={i*deltax,(j-l)*deltay};

ptS:ptl;

midpt={(i+I/2)*deltax,(j-I/2)*deltax};

If[red==l,red=O;green=l;blue=O;Itype={1};gray=0.5,

If[green==l,red=O;green=O;blue=l;itype={O.O2,0.O2};gray=.7,

If[blue==1,red=1;green=O;blue=O;itype={O.O1,0.O2,0.O2,0.O2};gray= 9]]];

AppendTo[colorboxlist,{RGBColor[red,green,blue],Line[{ptl,pt2,pt3,pt4,ptS}]}];

itype={1};

AppendTo [boxl ist, {Dashing [itype], Line [{pt I,pt2, pt 3,pt4, pt 5}] }] ;

AppendTo [grayboxlist, {GrayLevel [gray], Line [{pt i,pt2, pt3, pt4, pt5}] }] ;

AppendTo [grayrectl ist, {SrayLevel [gray] ,Rectangle [pt4, pt2] }] ;

AppendTo [stencilorderlist, {GrayLevel [I] ,Text [ct ,midpt] }] ;

,{ct, I, Length [topleftlist] }] ;

g3=Show [Graphics [grayrectlist], DisplayFunction->Identity] ;

g4=Show [Graphics [boxlist] ,DisplayFunction->Identity] ;

gS=Show [Graphics [stencilorderlist] ,DisplayFunction->Identity] ;

Show [g3, g4,

Graphics [{PointSize [0.05], picturelist, {PointSize [.02], Point [{0,0}] }}],

gl, g2, g5, DisplayFunct ion->$DisplayFunct ion, Plot Label->t it lestring, Axes->True,
Aspect Rat io->Aut omat ic] ;

Show[Graphics[{PointSize[O.OS],picturelist,{PointSize[.O2],Point[{O,O}]}}],

gl,g2,g3,DisplayFunction->$DisplayFunction,PlotLabel->titlestring,Axes->True,

AspectRatio->Automatic,GridLines->{ticklist,ticklist}];

);

makebesselfile:=(

stmp=OpenWrite["besselfile"];

deltax=N[l.O/iun,30];

NASA/TM--1999-209182

305

(* *)

(* Can use any of the eigenvalues from BesselJPrimeZeros[O,n] *)

(* *)

bessellam ::3. 8317059702075123156144358863081 ;

Kit_] := N[Sqrt[2.0] BesselJ[O,bessellam rS/BesselJ[O,bessellam],50];

Do[

Do[

physicalicoord=N [i*delt ax, 50] ;

phys ical3 coord=N [3 *deltax, 50] ;

physicalr = N [Sqrt [physicalicoord'2+physicaljcoord'2], 50] ;

besseld=5.0;

Write[stmp,N[besseld R[physicalr]/Sqrt[2 * Pi],50]];

(*

pressuregrid[[matrixicoord,matrixjcoord]]=N[d R[physicalr] / Sqrt[2 Pi]];

*)

,{i,-im,im}]

,{j,-im,is}] ;

Close [stmp] ;

);

(, ,)

(* This procedure will return a set of 9 vectors showing the arrow or direction *)

(* for each of the 9 grid points to be mapped to. If they are an interior point *)

(* they do not get mapped, so assigned a none or {0,0} vector *)

(* *)

s7mapping[sTmatrix_]:=(

Print["Calling sTmapping"];

(* p7 p8 p9 *)

(* p4 p5 p6 *)

(* pl p2 p3 *)

* *)

(* Set of all normalized vector directions *)

(, ,)

none = {0,0};

up = {0,i};

upright = {I/Sqrt[2],l/Sqrt[2]};

right = {i,0};

downright = {I/Sqrt[2],-I/Sqrt[2]};

down = {0,-1};

downleft = {-I/Sqrt[2],-I/Sqrt[2]};

left = {-1,0};

upleft = {-1/Sqrt[2],I/Sqrt[2]};

* *)

(* By s7 assumption, these do not vary *)

(, ,)

(* It is important to check for undefined arrows *)

(* Those marked undefined should be defined later *)

(, ... ,)

pl=undefined;

p2=none;

NASA/TM-- 1999-209182

306

p3=undefined;

p4=undefined;

pB=none;

p6=undefined;

p7=undefined;

p8=up;

p9=undefined;

(* ,)
(* Non-Double Fill s7 modified assumption

(*
,)
,)

(* Row 5 of $7 Symmetrical Mapping Figure in Dissertation *)

(* Only the p7 changes direction for this case based on 2,2 *)

(* If no B nearby, p7 is left undefined *)

(* X X B X X *)

(* X X B X X *)

(* X o o X X *)

(* X . X X *)

(* X o . X X *)

If[sTmatrix[[5,2]]==2 _& sTmatrix[[4,2]]==l _ sZmatrix[[3,2]]==2,

(* Default Settings *)

If[sZmatrix[[2,2]]!=O _ sTmatrix[[2,1]]!=O,

pl=downleft; p4=none; pT=up];

If [sTmatrix[[2,2]]=:O,

p1=downleft; p4=none; pT=up] ;

If [sTmatrix [[2, I]] ==0,

p1=downleft; p4=none; pT=upleft];

];

(* *)

(* Right Side *)

(, ,)

If[sTmatrix[[5,4]]==2 &_ sYmatrix[[4,4]]==l _& sTmatrix[[3,4]]==2,

If[sTmatrix[[2,4]] !=0 &_ sTmatrix[[2,5]] !=0,

p3=downright ; p6=none; p9=up] ;

If [s7matrix[[2,4]] ==0,

p3=downright; p6=none; pg=up] ;

If [sTmatrix [[2,5]] ==0,

p3=downright ; p6=none; pg=upright] ;

];

(* Row 6 of $7 Symmetrical Mapping Figure in Dissertation *)

(* X X B X X *)

(* X X B X X *)

(* X o o X X *)

(* X o . X X *)

(* X . . X X *)

If[s7matrix[[5,2]]==1 _ sTmatrix[[4,2]]==2 && s7matrix[[3,2]]==2,

(* Default Settings *)

If[sTmatrix[[2,2]]!=O && s7matrix[[2,1]]!=O,

NASA/TM-- 1999-209182

307

p1=none; p4=upleft; p7=upleft];

If [s7matrix[[2,2]] ==0,

pl=none; p4=upleft; p7=up] ;

If [s7matrix [[2, I]1 ==0,

pl=none; p4=upleft; pT=upleft 1;

3;

(* *)

(* Right Side *)

(* *)
If[sTmatrix[[5,4]]==l &_ s7matrix[[4,4]]==2 _ sTmatrix[[3,4]]==2,

(* Default Settings *)

If[sTmatrix[[2,4]] !=0 _ sTmatrix[[2,5]] !=0,

p3=none; p6=upright ; p9=upright] ;

If [s7matrix [[2,411 ==0,

p3=none; p6=upright ; p9=up] ;

If [sTmatrix[[2,5]] ==0,

p3=none ; p6=upright ; pg=upright] ;

1;

(* Row 7 of $7 Symmetrical Mapping *)

(* X X B X X *)

(* X X B X X *)

(* X o o X X *)

(* X . . X X *)

(* X . X X *)

If[s7matrix[[5,2]]==1 _& sTmatrix[[4,2]]==l _ sTmatrix[[3,2]]==2,

(* Default Settings *)

If[sgmatrix[[2,2]] !=0 _ s7matrix[[2,1]] !=0,

p1=none; p4=none; p7=up 1;

(* X X B X X *)

(* X B B X X *)

(* X o o X X *)

(* X . . X X *)

(* X . . X X *)

If [s7matrix[[2,2]] ==0,

pl=none; p4=none; pT=up];

(* X X B X X *)

(* B X B X X *)

(* X o o X X *)

(* X . X X *)
(* X . . X X *)

If [sTmatrix[[2, I]] ==0,

p1=none; p4=none; p7=upleft];

];

(* Right Side *)

If[sTmatrix[[5,41]==l &_ s7matrix[[4,4]]==l &_ s7matrix[[3,4]]==2,

(* Default Settings *)

If[s7matrix[[2,4]]!=O _a s7matrix[[2,5]]!=O,

NASA/TM-- 1999-209182

308

p3=none; p6=none; p9=up] ;

If [s7matrix [[2,4]]==0,

p3=none; p6=none; pg=up] ;

If [s7matrix[[2,5]]==O,

p3=none; p6=none; p9=upright] ;

];

(* ,)

(* Double Fill with interior and fill cases using 5by5 info. only with modified*)

(* s7 ,)
(* Here the outer points of 5 by 5 affects mapping. *)

(* *)

(*XXBXX*)

(*XXBXX*)

(*XooXX*)

(*Xo XX*)

(*Xo.XX*)

(* Left Side *)

If [(s7matrix[[5 ,2]]==2 && s7matrix[[4,2]]==2 &_ s7matrix[[3,2]]:=2) ,

(*XXBXX*)

(*BBBXX*)

(*BooXX*)

(*Bo.XX*)

(*Zo.XX*)

If[s7matrix[[5,1]] !=0 _ s7matrix[[4,1]]==O _& s7matrix[[3,1]]--=O _

sTmatrix [[2,2]]==0 ,

p1=upleft; p4=upleft; p7=up];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* B o . X X *)

(* B o . X X *)

If[s7matrix[[5,1]]==O _a s7matrix[[4,i]]==O _ s7matrix[[3,1]]==O _&

s7matrix[[2,2]] ==0 ,

p1=left; p4=left; p7=up];

(*XXBXX*)

(*BBBXX*)

(*BooXX*)

(*Bo.XX*)

(*Bo.XX*)

NASA/TM-- 1999-209182

309

If[s7matrix[[5,1]] !=0 _a sTmatrix[[4,1]] !=0 _ s7matrix[[3,1]]==O _

s7matrix[[2,2]]==O ,

pl=downleft ; p4=upleft ; pT=up] ;

(* X X BX X*)

(* B B B X X *)

(* B o o X X *)

(* Z o . X X *)

(* B o . X X *)

If[s7matrix[[5,1]]==O _ sTmatrix[[4,1]] !=0 _ s7matrix[[3,1]]==O _

sTmatrix [[2,21] ==0 ,

p1=left; p4=upleft; pT=up];

(* Degenerate *)

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* B o . X X *)

(* Z o . X X *)

If[sTmatrix[[5,1]] !=0 _& sTmatrix[[4,1]]==O gt& sTmatrix[[3,1]] !=0 _

sTmatrix [[2,21] ==0 ,

pl=left; p4=left; p7=up];

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* B o . X X *)

(* B o . X X *)

If[s7matrix[[5,11]==O && sTmatrix[[4,111==O && sTmatrix[[3,1]] !=0 _

sTmatrix [[2,2]] ==0 ,

pl=left; p4=left; pT=up];

(* Degenerate *)

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* Z o . X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O _ s7matrix[[4,1]] !=0 _& sTmatrix[[3,1]] !=0 _

sTmatrix [[2,2]] ==0 ,

pl=left; p4=left; pT=up];

(* First ROW Done of $7 Symmetrical Mapping in Dissertation figure *)

(* Starting Second KOW *)

(* The first and second row have identical mappings, and will be handled by *)

(* the first 7 *)

(* mappings since sTmatrix[[2,1]] is not compared above since its never mapped *)

NASA/TM-- 1999-209182

310

(* to ,)

(* Done with Second RDW *)

(* Starting Third ROW *)

(* ,)

(* Double Fill with interior and fill cases using 5by5 info. only with modified*)

(* s7 ,)

(* Here the outer points of 5 by 5 affects mapping. ,)

(* ,)

(*XXBXX*)

(*BZBXX*)

(*BooXX*)

(*Bo.XX*)

(*Zo.XX*)

If[s7matrix[[5,1]] !=0 _ s7matrix[[4,1]]==O _& s7matrix[[3,1]]==O _

sZmatrix [[2, I]] ==0 ,

p1=upleft; p4=upleft; pT=upleft];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* B o . X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O _ sTmatrix[[4,1]]==O && s7matrix[[3,1]]==O _

sYmatrix [[2, I]] ==0 ,

pl=left; p4=left; pT=upleft];

(*XXBXX*)

(*BBBXX*)

(*BooXX*)

(*Zo.XX*)

(*Zo.XX*)

If[s7matrix[[5,l]]!=O _& sTmatrix[[4,1]]!=O _& s7matrix[[3,1]]==O &_

sTmatrix[[2,1]]==O ,

pl=downleft; p4=upleft; p7=upleft];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* Z o . X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O _ sTmatrix[[4,1]]!=O _ sTmatrix[[3,1]]==O _

s7matrix[[2, I]]==0 ,

pl=left; p4=upleft; p7=upleft];

(* Degenerate *)

(* X X B X X *)

(* B Z B X X *)

(* Z o o X X *)

NASA/TM-- 1999-209182

311

(* B o . X X *)

(* Z o . X X *)

If[sTmatrix[[5,1]]!=O _& sTmatrix[[4,1]]==O _& s7matrix[[3,1]]!=O &_

sTmatrix[[2, I]] ==0 ,

pl=left; p4=left; pT=upleft] ;

(* X X B X X *)

(* B Z B X X *)

(* Z o o X X *)

(* B o . X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O && s7matrix[[4,1]]==O a_ sTmatrix[[3,1]]!=O _&

sTmatrix[[2, I]] ==0 ,

pl=left; p4=left; p7=upleft];

(* Degenerate *)

(* X X B X X *)

(* B Z B X X *)

(* Z o o X X *)

(*Zo .XX*)

(* B o . X X *)

If[s7matrix[[5,1]]==O &a sTmatrix[[4,1]]!=O && s7matrix[[3,1]]!=O &&

s7matrix[[2,1]]==O ,

pl=left; p4=left; pT=upleft];

(* Done with ROW 3 *)

(* Start ROW 4, think its last *)

(* *)

(* Double Fill with interior and fill cases using 5by5 info. only with modified *)

(* s7 *)

(* Here the outer points of 5 by 5 affects mapping. *)

(* *)

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* B o . X X *)

(* Z o . X X *)

If[s7matrix[[5,1]] !=0 _& sTmatrix[[4,1]]==O &_ sTmatrix[[3,1]]==O &&

sTmatrix [[2, I]])=0

_ s7matrix[[2,2]] !=0 ,

p1=upleft; p4=upleft; pT=up];

(*XXBXX*)

(*ZZBXX*)

(*BooXX*)

(*Bo XX*)

NASA/TM--1999-209182

312

(* B o . X X *)

If[s7matrix[[5,1]]==O &_ s7matrix[[4,1]]==O a_ s7matrix[[3,1]]==O _

s7matrix[[2, I]] !=0

_& s7matrix[[2,2]] !=0 ,

pl=left; p4=left; p7=left];

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* Z o . X X *)

(* Z o . X X *)

If[s7matrix[[5,1]] !=0 && s7matrix[[4,1]] !=0 &_ s7matrix[[3,1]]==O &&

s7matrix[[2, I]] !=0

_& s7matrix[[2,2]] !=0 ,

pl=downleft ; p4=upleft ; p7=up] ;

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* Z o X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O &a sTmatrix[[4,1]]!=O && sTmatrix[[3,1]]==O &&

s7matrix[[2, I]] !=0

&a sTmatrix[[2,2]]!=O ,

pl=left; p4=upleft; p7=up] ;

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* Z o o X X *)

(* B o . X X *)

(* Z o . X X *)

If[s7matrix[[5,1]] !=0 &_ s7matrix[[4,1]]==O &_ s7matrix[[3,1]] !=0 _

s7matrix [[2, I]] !=0

&& s7matrix [[2,2]] !=0 ,

pl=left; p4=left; p7=up];

(* X X B X X *)

(* Z Z B X X *)

(* Z o o X X *)

(* B o . X X *)

(* B o . X X *)

If[sTmatrix[[5,1]]==O && sTmatrix[[4,1]]==O _& s7matrix[[3,1]]!=O &&

sTmatrix[[2, I]] !=0

&_ s7matrix[[2,2]] !=0 ,

p1=left; p4=left; p7=up];

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

NASA/TM-- 1999-209182

313

(*ZooXX*)

(* Z o . X X *)

(*B o. XX*)

If[sTmatrix[[5,1]]==O _ sTmatrix[[4,1]]!=O _ s7matrix[[3,1]]!=O _&

sZmatrix [[2, I]] !=0

a_ s7matrix[[2,2]] !=0 ,

pl=left; p4=left; pZ=up];

(* Done with ROW 4 *)

];

(* Right Side *)

If[(sTmatrix[[$,4]]==2 _ sTmatrix[[4,4]]==2 _& sTmatrix[[3,4]]==2)

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* B o . X X *)

(* Z o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]!=O _ sTmatrix[[4,5]]:=O _& sTmatrix[[3,5]]==O _

s7matrix[[2,4]]==O ,

p3=upright; p6=upright; pg=up];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* B o . X X *)

(*Bo. XX*)

(* Right Side *)

If[sZmatrix[[5,5]]==O &_ sTmatrix[[4,5]]==O _& sYmatrix[[3,5]]==O _

sYmatrix[[2,4]]==O ,

p3=right; p6=right; p9=up];

(* X X B X X *)

(* B B B X X *)

(*BooXX*)

(* B o . X X *)

(* B o . X X *)

(* Right Side *)

If[sYmatrix[[5,5]]!=O _ sTmatrix[[4,5]]!=O _ sTmatrix[[3,5]]==O _&

sYmatrix[[2,4]]==O ,

p3=downright; p6=upright; p9=up];

(* X X B X X *)

NASA/TM--1999-209182

314

(* B B B X X *)

(* B o o X X *)

(* Z o . X X *)

(* B o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]==O &_ s7matrix[[4,5]]!=O _ sTmatrix[[3,5]]==O &_

sTmatrix[[2,4]]==O ,

p3=right; p6=upright; p9=up];

(* Degenerate *)

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* B o . X X *)

(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O && s7matrix[[4,5]]==O &_ s7matrix[[3,5]]!=O _

sTmatrix[[2,4]]==O ,

p3=right; p6=right; p9=up];

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* B o . X X *)

(* B o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]==O _ s7matrix[[4,5]]==O &_ s7matrix[[3,5]]!=O _

s7matrix[[2,4]]==O ,

p3=right; p6=rig-ht; pg=up];

(* Degenerate *)

(* X X B X X *)

(* B B B X X *)

(* Z o o X X *)

(* Z o . X X *)

(* B o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]:=O &_ sTmatrix[[4,5]]!=O &_ s7matrix[[3,5]]!:O _

s7matrix[[2,4]]==O ,

p3=right; p6=right; p9=up];

(* First ROW Done of $7 Symmetrical Mapping in Dissertation figure *)

(* Starting Second ROW *)

(* The first and second row have identical mappings, and will be handled by the

NASA/TM--1999-209182

31.5

first 7 *)

(* mappings since s7matrix[[2,1]] is not compared above since its never mapped

to *)

(* Done with Second ROW *)

(* Starting Third ROW *)

(*
*)

(* Double Fill with interior and fill cases using 5by5 info. only with modified *)

(* s7 *)
(* Here the outer points of 5 by 5 affects mapping. *)

(, *)

(* X X B X X *)

(* B Z B X X *)

(* B o o X X *)

(* B o . X X *)

(* Z o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]!=O _ s7matrix[[4,5]]==O _ sTmatrix[[3,5]]==O _&

s7matrix[[2,5]]==O ,

p3=upright; p6=upright; pg=upright];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* B o . X X *)

(* B o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]==O _a sTmatrix[[4,5]]==O _ sTmatrix[[3,5]]==O _&

s7matrix[[2,5]]==O ,

p3=right; p6=right; p9=upright];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* Z o . X X *)

(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O _ s7matrix[[4,5]]!=O _& sTmatrix[[3,5]]==O _

sTmatrix[[2,5]]==O ,

p3=downright; p6=upright; pg=upright];

(* X X B X X *)

(* B B B X X *)

(* B o o X X *)

(* Z o . X X *)

(*Bo. XX*)

NASA/TM-- 1999-209182

316

(* Right Side *)

If[s7matrix[[5,5]]==O &_ s7matrix[[4,5]]!=O && s7matrix[[3,S]]==O &&

s7matrix[[2,5]]==O ,

p3=right; p6=upright; p9=upright];

(* Degenerate *)

(* X X B X X *)

(* H Z B X X *)

(* Z o o X X *)

(* B o . X X *)

(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O &_ sTmatrix[[4,5]]==O _& sTmatrix[[3,5]]!=O &&

s7matrix[[2,5]]==O ,

p3=right; p6=right; p9=upright];

(*XXBXX*)

(*BZBXX*)

(*ZooXX*)

(*Bo.XX*)

(*Bo.XX*)

(* Right Side *)

If[s7matrix[[5,5]]=:O && sTmatrix[[4,5]]==O && sTmatrix[[3,5]]!=O &&

sTmatrix[[2,5]]==O ,

p3=right; p6=right; pg=upright];

(* Degenerate *)

(* X X B X X *)

(* B Z B X X *)

(* Z o o X X *)

(* Z o X X *)

(* B o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]==O && sTmatrix[[4,5]]!=O && sTmatrix[[3,5]]!=O &_

sTmatrix[[2,5]]==O ,

p3=right; p6=right; pg=upright];

(* Done with ROW 3 *)

(* Start ROW 4, think its last *)

(, ..,)

(* Double Fill with interior and fill cases using 5by5 info. only with modified *)

(* s7 ,)
(* Here the outer points of 5 by 5 affects mapping. .)

(, ..,)

(* Degenerate *)

NASA/TM-- 1999-209182

317

(* X X B X X *)
(* Z Z B X X *)
(*BooXX*)
(* B o . X X *)
(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O &_ s7matrix[[4,5]]==O &_ s7matrix[[3,5]]=:O &&

sZmatrix [[2,5]] !=0

_a sTmatrix[[2,4]] !=0 ,

p3=upright ; p6=upright ; p9=up] ;

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* B o . X X *)

(* B o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]==O _a sTmatrix[[4,5]]==O _a sTmatrix[[3,5]]==O _&

s7matrix[[2,5]] !=0

&_ s7matrix[[2,4]] !=0 ,

p3=right; p6=right; p9=right];

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* Z o . X X *)

(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O _ s7matrix[[4,5]] !=0 _ s7matrix[[3,5]]==O _

sTmatrix[[2,5]] !=0

_ sZmatrix[[2,4]] !=0 ,

p3=downright; p6=upright; p9=up];

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* B o o X X *)

(* Z o . X X *)

(* B o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]==O _ sTmatrix[[4,5]] !=0 _:_ s7matrix[[3,5]]==O _&

s7matrix[[2,5]] !=0

_ sTmatrix[[2,4]] !=0 ,

NASA/TM--1999-209182

318

p3=right; p6=upright; p9=up];

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* Z o o X X *)

(* B o . X X *)

(* Z o . X X *)

(* Right Side *)

If[s7matrix[[5,5]]!=O _a s7matrix[[4,5]]==O && s7matrix[[3,5]]!=O &&

sZmatrix[[2,5]]==O ,

p3=right; p6=right; p9=up];

(*XXBXX*)

(*ZZBXX*)

(*ZooXX*)

(*Bo.XX*)

(*Bo.XX*)

(* Right Side *)

If[sZmatrix[[5,5]]==O && s7matrix[[4,5]]==O _& sZmatrix[[3,S]]!=O &&

sTmatrix [[2,5]] !=0

&_ s7matrix[[2,4]] !=0 ,

p3=right ; p6=right ; p9=up] ;

(* Degenerate *)

(* X X B X X *)

(* Z Z B X X *)

(* Z o o X X *)

(* Z o . X X *)

(* B o . X X *)

(* Right Side *)

If[sTmatrix[[5,5]]==O && sTmatrix[[4,5]]!=O && s7matrix[[3,5]] !=0 _&

sTmatrix[[2,5]]!=O

&& s7matrix[[2,4]] !=0 ,

p3=right ; p6=right ; pg=up] ;

(* Done with ROW 4 *)

];

dirmat :{{p7, pS, pg}, {p4, pS, p6}, {pl, p2, p3}} ;
dirmat

);

showfills:=(

(*

fillposlist=Position[thegrid,2];

NASAITM-- 1999-209182

_19

,)
fillposlist=correctfillordering;

Do[

matrixi=fillposlist [[ct]] [[I]] ;

matrixj=fillposlist [[ct]] [[2]] ;

ict= matrixj-im-l;

jct=-matrixi+im+l;

oldphysicalpositionvector={ict*deltax,jct*deltax};

newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[-theta],{O,O}];

newphysicalicoord=newphysicalpositionvector[[l]];

newphysicaljcoord=newphysicalpositionvector[[2]];

correctp = -N[(Cos[Sqrt[2] Pi physicaltime] Cos[Pi newphysicalicoord] Cos[Pi

newphys icalj coord])] ;

If [thegrid [[matrixi, matrixj]] !=2, Print ["Fill Error"]] ;

If [Abs [pressuregrid [[matrixi ,matrixj, I, I]] -correctp] >. 5,

Print[__*Pressure[___matr_xi_______matrixj___]=____ressuregr_d[[matr_xi_matr_xj____]]_

" correctp =",correctp],

Pr_nt[''Pressure[''_matrixi_''_''_matrixJ_'']=''_Pressuregrid[[matrixi_matrixJ_]]_ ''

correctp =",correctp]]

,{ct,l,Length[fillposlist]}];

);

(*
,)

(* This procedure will compute the number of fills in the stencil for

(* sorting purposes. Returns 0 if not a useful stencil

(*

,)
,)
,)

getnumberoff illsinstencil2 [testmatrix_] := (

localt estmatrix=testmatrix ;

lmat=testmatrix ;

(* Quads *)

(, ,)
(*13121*)

(*---o---*)
('14111")
(. ,)
numberof f ills quadl =5 ;

numberof f illsquad2=5 ;

numberof f illsquad3=5 ;

numberof f illsquad4=5 ;

(,,)

(* Determine which 2 by 2 stencil to use *)

(,,)

(* x x x x x x x *)
(* x x x x x x x *)
(* x x x x x x x *)
(* x x x o . x x *)
(* x x x . . x x *)
(* x x xx x x x *)
(* x x x x x x x *)
(* Count number of fills in quad I, 0 means don't use ,)

NASA/TM--1999-209182

320

(* Trying to minimize number of fills in each stencil

(*
,)
,)

If[imat[[5,5]]==l]I imat[[5,4]]==l J] imat[[4,5]]==1,

numberof fillsquadl =1 ;

If[Imat[[5,5]]==2, numberoffillsquad1++];

If[imat[[4,5]]==2, numberoffillsquad1++];

,4]]==2, numberoffillsquad1++];If[imat [[5

];

(* X X X X

(* X X X X

(* X X X .

(* X X X 0

(* X X X X

(* X X X X

X X X *)

X X X *)

X X *)

• X X *)

X X X *)

X X X *)

(* X X X X X X X *)

(* Count number of fills in quad 2, 0 means don't use

(* Trying to minimize number of fills in each stencil
(*

,)
,)
,)

If[imat[[3,5]]==1 If imat[[3,4]]==1 II imat[[4,5]]=:1,

numberof fillsquad2= 1 ;

If[Imat[[3,5]]==2, numberoffillsquad2++];

If[Imat[[4,5]]==2, numberoffillsquad2++];

If[Imat[[3,4]]==2, numberoffillsquad2++];

];
(* x x xxxx x*)
(* x xxxxx x*)

(* x x . . x x x *)
(* xx . o xx x*)
(* x x x x x x x *)
(*xxxxxxx*)
(* x x x x x x x *)

(* Count number of fills in quad 3, 0 means don't use *

(* Trying to minimize number of fills in each stencil *
(_ ..

If[imat[[4,3]]==l I] Imat[[3,3]]==1]1 Imat[[3,4]]==l,

numberoff illsquad3=l ;

If[imat[[4,3]]==2, numberoffillsquad3++];

If[imat[[3,3]]=:2, numberoffillsquad3++];

[3,4]]==2, numberoffillsquad3++];If [imat [

];
(* X X X

(* X X X

(* X X X

(* X X .

(* X X .

(* X X X

(* X X X

XXXX*)

XXXX*)

XXXX*)

OXXX*)

• X X X _)

XXXX*)

XXXX*)

(* Count number of fills in quad 4, 0 me_s don't use *)

(* Trying to minimize number of fills in each stencil *)

(, ..,)

If[Imat[[5,3]]==1 I] imat[[5,4]]==l II Imat[[4,3]]==l,

NASA/TM-- 1999-209182

321

numberof fillsquad4= I ;

If [imat [[5,3]]==2, numberoffillsquad4++] ;

If [imat [[4,3]]==2, numberoff illsquad4++] ;

If[Imat[[5,4]]==2, numberoffillsquad4++] ;

];

best quadnumber=O ;

(* *)

(* Now determine which quadrant has the fewest number of fill points *)

(* *)
(* Quad 1 *)

(, ,)
If[numberoffillsquadl <= numberoffillsquad2 &_

numberoffillsquadl <= numberoffillsquad3 &_

numberoffillsquad_ <= numberoffillsquad4 _k

numberoffillsquadl <5,

bestquadnumber=1;numberoffills=numberoffillsquadl];

(* Quad 2 *)

(, ,)

If[numberoffillsquad2 <= numberoffillsquadl &_

numberoffillsquad2 <= uumberoffillsquad3 &_

numberoffillsquad2 <= numberoffillsquad4 _

numberoffillsquad2 <5,

bestquadnumber=2;numberoffills=numberoffillsquad2];

(* Quad 3 *)

(, ,)

If[numberoffillsquad3 <= numberoffillsquad2 _

numberoffillsquad3 <= numberoffillsquadl &&

numberoffillsquad3 <= numberoffillsquad4 k_

numberoffillsquad3 <5,

bestquadnumber=3;numberoffills=numberoffillsquad3];

(* Quad 4 *)

(, ,)

If[numberoffillsquad4 <= numberoffillsquad2 _

numberoffillsquad4 <= numberoffillsquad3 &&

numberoffillsquad4 <= numberoffillsquadl &_

numberoffillsquad4 <5,

bestquadnumber=4;numberoffills=numberoffillsquad4];

(* *)

(* At this point, bestquadnumber is the correct quadrant to use with this *)

(* fill point. If O, then this fill point is not needed *)

(* numberoffills contains number of fills using the correct quadrant *)

(* Return this pair of information *)

(, ..,)

{bestquadnumber,numberoffills}

);

NASA/TM--1999-209182

322

(* ,)
(* This procedure will compute the number of fills in the stencil for

(* sorting purposes. Returns 0 if not a s8 or s7 stencil

(*

,)
,)
,)

getnumberoffillsinstencil[testmatrix]:=(

localtestmatrix=testmatrix;

isgood=False;

isneeded=False;

ignore=False;

dolater=False;

rotations=xxx;

s8formrotations=False;

sTformrotations=False;

MatrixForm[testmatrix];

numberoffills=O;

Do[

(* *)

(* Test Diagonal s8 assumption *)

(* *)
If[localtestmatrix[[4,4]]==1,

If[localtestmatrix[[1,1]]==O && localtestmatrix[[2,2]]==O &&

localtestmatrix[[5,5]]==1,

(*

(* It is s8, now count the number of fills in this 3 by 3 canonical stencil *

(* .

numberoffills8=l;

If[localtestmatrix[[3,4]]==2,numberoffills8++];

If [localtestmatrix [[3,5]] ==2, numberof fills8++] ;

If [localt estmatrix [[4,3]] ==2, numberof f ills8++] ;

If [localt estmatrix [[5,3]] ==2, numberoffillsS++] ;

If [localt estmatrix [[4,5]] ==2, numberof f ills8++] ;

If [localt estmatrix [[5,4]] ==2 ,numberoff ills8++] ;

isgood=True;rotations=ct-l; s8formrotations=ct-1];

isneeded=True];

(* *)

(* Test Vertical s7 assumption *)

(* *)
If[localtestmatrix[[4,3]]==1,

If[localtestmatrix[[1,3]]==O && localtestmatrix[[2,3]]==O &&

localtestmatrix[[5,3]]==l,

(*

(* It is s7, now count the number of fills in this 3 by 3 canonical stencil *

(* ,

numberoffillsT= 1 ;

If [localt estmatrix [[3,2]] ==2, numberoffillsT++] ;

If [localtestmatrix [[3,4]] ==2, numberof f illsT++] ;

If [localtestmatrix [[4,2]] ==2, numberof fills7++] ;

If [localtestmatrix [[4,4]] ==2, numberof f illsT++] ;

If [localt estmatrix [[5,2]] ==2, numberof f illsT++] ;

NASA/TM--1999-209182

323

If[localtestmatrix[[5,4]]==2,numberoffills7++];

isgood=True;rotations=ct-1; sTformrotations=ct-1];

isneeded=True];

subtestmatrix=rotateSbyS[localtestmatrix,i];

localtestmatrix=subtestmatrix;

,{ct,i,4}];

If[isneeded &_ Not[isgood],

Print["s8 or s7 assumption not holding at location

",matrixi,matrixj,localtestmatrix];

dolater=True];

If[Not[isneeded] _ Not[isgood], Print["Ignore this fill'°];ignore=True];

(* *)

(* If both s8 and s7 occur, this will give preference to s8 *)

(, ..,)

If[NumberQ[sSformrotations],numberoffills=numberoffillsS,

If[NumberQ[sTformrotations],numberoffills=numberoffillsT]];

numberoffills

);

(* *)

(* This procedure will return a list of fill points in the order of *)

(* minimizing the boundary terms used. *)

(* It will do this by ordering the fill points in the order of minimal fill *)

(* points in the spatial interpolation stencil *)

(* *)

minimizeboundary2:=(

(* *)

(* Gather all the fill points in entire grid whether needed or not *)

(* *)

f illposlist=Position [thegrid, 2] ;

fillctlist={};

DoE

(, ..,)

(* Get the location of the fill point in matrix coordinates *)

(, ..,)

matrixi=fillposlist[[ct]][[l]];

matrixj=fillposlist[[ct]][[2]];

(* *)

(* Get the 7 by 7 stencil with the fill in the center *)

(, ..,)

stencilZbyZ=SubMatrix[thegrid,{matrixi-3,matrixj-3},{7,7}];

(* *)
(* Count the number of fills in the s8 or s7 stencil *)

(* *)

{bestquadnumber,numberoffills}=getnumberoffillsinstencil2[stencilTbyT];

(, ..,)

NASA/TM--1999-209182

324

(* If bestquadnumber is zero, this fill has no adjacent interior; ignore it *)

(* Otherwise, make a list of all legal stencil fill counts for sorting *)

(* *)

If [bestquadnumber !=0, AppendTo [fillctlist, {numberoff ills, ct, bestquadnumber}] B ;

,{ct, I, Length [fillposlist] }] ;

(* *)

(* At this point have a list that needs sorted, each element has 3 parts *)

(* 1. Number of fills 2. index of fill point in fillposlist *)

(* 3. correct quadrant to use with this fill point *)

(* *)

minimizeboundarylist=Sort[fillctlist];

maximizeboundarylist=Reverse[minimizeboundarylist];

returnlist={};

(* *)

(* Favor the interior data information by using stencils with fewest number *)

(* of fills. *)

(* *)
Do[

index=minimizeboundarylist [[ct]] [[2]] ;

quadtouse=minimizeboundarylist [[ct]] [[3]] ;

fillpointlocation=Append[fillposlist[[index]],quadtouse];

AppendTo[returnlist,fillpointlocation];

,{ct,l,Length[maximizeboundarylist]}];

(*

Do[

index=maximizeboundarylist[[ct]][[2]];

quadtouse=maximizeboundarylist[[ct]] [[3]];

fillpointlocation=Append[fillposlist[[index]],quadtouse];

AppendTo[returnlist,fillpointlocation];

,{ct,l,Length[maximizeboundarylist]}];

*)

returnlist

);

(_ ,)

(* This procedure will return a list of fill points in the order of

(* minimizing the boundary terms used.

(*

,)
,)
,)

minimizeboundary:=(

(* Gather all the fill points in entire grid whether needed or not *)

(, ...,)

fillposlist=Position[thegrid,2];

NASA/TM-- 1999-209182

32_

fillctlist={};

DoE

(* *)

(* Get the location of the fill point in matrix coordinates *)

(* *)

matrixi=fillposlist [[ct]][[i]] ;

matrixj=fillposlist [[ct]] [[2]] ;

(* *)

(* Get the 5 by 5stencil with the fill in the center *)

(* *)
stencilSbyS=SubMatrix[thegrid,{matrixi-2,matrix3-2},{5,5}];

(, ...,)

(* Count the number of fills in the s8 or s7 stencil *)

(* *)
numberoffills=getnumberoffillsinstencil[stencil5byS];

(* *)

(* If numberoffills is zero, this fill has no s8 or s7 stencil so ignore it *)

(* Otherwise, make a list of all legal stencil fill counts for sorting *)

(* *)
If[numberoffills>O, AppendTo[fillctlist,{numberoffills,ct}]];

,{ct,l,Length[fillposlist]}];

(* *)

(* At this point have a list that needs sorted, each element has two parts *)

(* I. Number of fills 2. index of fill point in fillposlist *)

(* *)

minimizeboundarylist:Sort[fillctlist];

maximizeboundarylist=Keverse[minimizeboundarylist];

returnlist={};

(* *)

(* Favor the interior data information by using stencils with fewest number *)

(* of fills. *)

(, ..,)
Do[

index=minimizeboundarylist[[ct]][[2]];

fillpointlocation=fillposlist[[index]];

AppendTo[returnlist,fillpointlocation];

,{ct,l,Length[maximizeboundarylist]}];

returnlist

);

* ... *)

(* This procedure will compute the normal and tangential derivatives *)

NASA/TM--1999-209182

326

(* of a function.

(*

,)

*)

computederivative[thefunction_,dnormal,dtangent_]:=(

Clear[ff,x,y];

mygrad[ff_]:= {D[ff,x],D[ff,y]};

derfntau[O,O] = thefunction;

(* *)

(* Take multiple directional derivatives in direction normal

(*

*)

*)

Do[

derfntau [ct,O] = Simplify [mygrad [derfntau [ct-I,O]].{normx, normy}] ;

,{ct, I,dnormal}] ;

(* *)

(* The tangent . normal = 0 *)
(* *)

tangx:-normy;

tangy=normx;
(* *)

(* Take multiple directional derivatives in direction tau, tangent *)
(* *)

(_

derfntau[O] = derfn[dnormal];

*)

Do[

derfntau [dnormal, ct] = Simplify [mygrad [derfntau [dnormal, ct- 1]]. {t angx, tangy}] ;

,{ct, 1,dtangent}] ;

Print ["Collecting... "];

(*

Collect [derfntau [drangent] ,pdata [.......]]

FulIS impl ify [derfntau [dtangent]]

*)

(*

Colle ct [derfntau [dta_gent] ,{D [HXO [_,_] ,{x, _},{y, _}],D [HXI [_,_] ,{x,_}, {y, _}],D [HY

O [_,_], {x,_}, {y, _}],D [HYI [_,_],{x,_}, {y,_}] },FullSimplify]

Collect [derfnt au [dtangent] ,D[thefunction, {x,_}, {y,_}], FullSimplif y]

Collect [derfntau [dtangent], variablelistp, Factor]

derfntau [dtangent]

Collect [derfntau [dtangent] ,{Derivative [_, _] [HXO] [_, _] ,Derivat ire [_,

][HXl][, _],Derivative[_, _][HYO][_, _],Derivative[_, _][HYI][_,

_]},FullSimplify]

*)

thehead=Head [thefunction] ;

Collect [derfntau [dnormal, dtangent], {Derivat ire [_,_] [thehead] [x,y]},FullSimplif y]

);

(* *)

(* Procedure to manually build the derpntau function *)

(.)

buildderf[infunction_,nder_,tder_]:=(

NASA/TM-- 199%209182

327

Clear[f,dx,dy,de,thecoef] ;

de=Table [Table [Table [Table [0,

{dx,O,degree}]

,{dy,O,degree}]

,{ict,1,2}]

,{jct,1,2}] ;

(*

Print["In buildderf de = ",de];

*)

thefunc=infunction;

(* *)

(* Handle the degenerate case of no derivatives *)
(, .. ,)

If[nder==O _ tder==O,

(* *)

(* Loop through all the data elements in the stencil adding the *)

(* HX HY thecoef factor *)

(* *)
Do [Do [

Do [Do [

termx=Symbol ["HX"<>ToString [ict]<>"D"<>ToString [dx]] [x] ;

termy=Symbol ["HY"<>ToString []ct] <>"D"<>ToString [dy]] [y] ;

de[[2-jct,ict+l,dx+l,dy+l]]+=(1) D[termx,{x,O}] D[termy,{y,O}] ;

,{dx,O,degree}]

, {dy, O, degree}]
,{ict, 0,i}]

,{jct,O,1}]

];

If [Not[nder=:O &_ tder==O],

(* *)

(* Calculate the normal and tangential derivative of undefined function *)
(* *)

getcoeffunc=computederivative[f[x,y],nder,tder];

(* *)

(* Loop through all terms in the function's derivative *)

(, ...,)

Do[

dyct=(Length[getcoeffunc]-l)-dxct;

(* *)

(* This is the coefficients that are for now comment to prevent symbol *)

(* explosion *)

(* *)

thecoef [dxct,dyct] =Coefficient [getcoeffunc, Derivat ire [dxct,dyct] [f][x,y]] ;

(,

thecoefdef init ion [dxct,dyct] =Coeff icient [getcoeffunc, Derivat ive [dxct,dyct] [f] [x,

y]] ;
*)

NASA/TM--1999-209182

328

(* ,)

(* Loop through all the data elements in the stencil adding the *)

(* HX HY thecoef factor ,)

(* ,)
Do [Do [

Do[Do[

termx=Symbol ["HX"<>ToString [ict]<>"D"<>ToString [dx]] [x] ;

termy=Symbol ["HY"<>ToString []ct]<>"D"<>ToString [dy]] [y];
(*

Print ["Doing ",dxct, dyct, ict,jct, dx, dy,thecoef [dxct,dyct], D [termx, {x,dxct}],

D [termy,{y,dyct}]] ;
*)

de [[2-]ct, ict+ I,dx+ 1,dy+ I]]+=thecoef [dxct,dyct] D [termx, {x,dxct}]

D [termy, {y,dyct}] ;

,{dx, 0,degree}]

,{dy, 0,degree}]

,{ict,0,1}]

,{jct,O,1}]

,{dxct, O, Length [get coeffunc] - I}] ;

];

(* ,)

(, The complete partial f /over partial n partial tau is *)

(* ,)

(*

infunction[x_,y_] := Sum[Sum[Sum[Sum[
*)

Sum [Sum [Sum [Sum [pvarordata [2-]ct,ict+l ,dx+1 ,dy+1] de [[2-3ct,ict+l ,dx+l ,dy+l]]
,{dx, 0,degree}]

,{dy, 0,degree}]

,{ict,O, i}]

,{jct,O,1}]
);

,)

(* Build all the equations required for solving all the data at a particular *)

(* fill point. ,)

(, ... ,)

buildequationsforafillpoint:=(

makehermld;

Clear[x.y,normx,normy,tangx,tangy];

equationct=l;

derpntaulist={};

deruntaulist={};

dervntaulist={};

nandtlist={{l,O},{3,0},{1,1},{3,1}};

(*

Do[

dnorm=nandtlist[[nandtct]] [[I]];

dtau=nandtlist[[nandtct]][[2]];

NASA/TM--1999-209182

329

,)
Do[Dot

If[equationct<=(degree+l)'2,

(* take derivatives in normal direction 2n+1 with n=0,1,2,3 ... *)

(* *)

(* Pressure wall boundary normal derivative = 0 *)

(* partial_(2n+1} p / partial N_(2n+l} partial T_(t} = 0 for n,t = 0,1,2,3 *)

(* *)

Print["dnorm: ",dnorm," dtau : ",dtau];

thepequation=buildderf[prhs[x,y],dnorm,dtau];

AppendTo[derpntaulist,thepequation==O];

Clear[al,bl,cl,dl];

AppendTo[deruntaulist,(thepequation/. {pvarordata[a1: ,b1: ,ci: ,dl:_]->tangx

uvarordata[al,bl,cl,dl] + tangy vvarordata[al,bl,cl,dl]})==O];

thevequation=buildderf[prhs[x,y],dnorm-l,dtau];

Clear[al,bl,cl,dl];

AppendTo[dervntaulist,(thevequation/. <pvarordata[al:_,bl:_,c1:_,d1:]->normx

uvarordata[al,bl,cl,dl] + normy vvarordata[al,bJ,cl,dl]})==O];

equationct++;

]

(,

,<nandtct,1,Length[nandtlist]}];

*)

,<dnorm,1,2*(degree+l),2}]

,<dtau,O,2*(degree+1)}];

(* *)

(* Define the H's symbolically *)

(* *)

Clear [xO, xl, yO,yl ,xl,yl] ;

Clear ["HXO*", "HX 1.", "HYO*", "HYI*"] ;

Do[

newsymbol I=Symbol ["HXOD"<>ToString [dx]] ;

newsymbol I [x_] =Simplify [Coef fic lent [hermpoly Id [x] ,fdata [dx, xO]]] ;

newsymbol2=Symbol ["HKID" <>ToString [dx]] ;

newsymbol2 [x_] =Simplify [Coefficient [hermpoly Id [x] ,fdata [dx, x I]]] ;

newsymbol3=Symbol ["HYOD"<>ToString [dx]] ;

newsymbol3[y_]=newsymbol1[x] /. <x->y,xO->yO,xl->yl};

newsymbol4=Symbol ["HYID"<>ToString [dx]] ;

newsymbol4 [y_] =newsymbol2 Ix] /. {x->y, xO->yO,xl->yl} ;

,{dx,O,degree}] ;

xO=-deltax/2;

xl= deltax/2;

yO=-deltax/2;

yl= deltax/2;

(* *)

(* De_ine the thecoef *)

NASA/TM--1999-209182

330

(* *)
(*

thecoef [dx_ ,dy_] :=thecoefdefinition [dx, dy] ;

*)

);

makehermld := (

If [Not [ValueO [degree]] ,

degree=Input ["Enter the degree: "1 ;

];

Clear [xO ,xl ,fdiv] ;

ptl ist =Join [Table [xO, {i, O, degree}], Table [xl, {i, O, degree}]] ;

Clear [fdiv] ;

If [Not [ListO[ptlist]],

ptlist=Input["Enter the list of point locations"]];

Do[

Print ["Column: " ,column] ;

Do[

subptlist=Take [ptlist, {subpart s, subpart s+column}] ;

Print ["fdiv [", Flatten [subptlist], "1 "] ;

(* *)

(* Now assign fdiv[subptlist] *)

(* *)

If [Length [subptlist] =:I,

fdiv [subpt iist] =fdat a [0, First [subptl ist]]] ;

(* *)

(* If the last and first index is at the same location then this is *)

(* a derivative term divided difference and needs specially assigned *)

(* *)

If [Length [subptlist] >I,

If [First [subptlist] ::=Last [subptlist],

fdiv [subpt list] =fdat a [column, First [subptlist]]/ (Length [subptlist] -i) !]] ;

(* *)

(* If not, then apply Divided Difference Recurrence Relation to general *)

(* case. *)

(* *)
If [Length [subptlist] >I,

If [First [subptlist] : !=Last [subptlist],

fdiv[subptlist]=(fdiv[Drop[subptlist,l]] - fdiv[Drop[subptlist,-l]])/

(Last[subptlist] -

First[subptlist] ;

]];

(*

Print["Assigned ",fdiv[subptlist]]

*)

,{subparts,l,Length[ptlist]-column}]

,{column,O,Length[ptlist]-l}];

(*

NASA/TM-- 1999-209182

331

degree=2;

ptlist={xO,xO,xO,xl,xl,xl};

buildtab;

*)

hermpolyld[x_] :=Collect [Sum[Product [(x-ptlist [[j]]) ,{j ,I,n-I}]

fdiv[Table[ptlist[[ptctJJ,{ptct,l,n}]] ,{n,1,Length[ptlist]}],fdata[_,_]];

>;

(*

normxtemp[1, I] :=0;

normytemp [i, 1] :=0;

normxtemp[1

normytemp[l

normxtemp[2

normytemp[2

normxtemp[l

normytemp[l

,1]:=-.707107;

,1]:= .707107;

,1]:= .707107;

,1]:= .707107;

,2]:= .707107;

,2]:=-.707107;

xcoord2 [I, I] :=-0.664214;

ycoord2[l, 1] :=0.25;

xcoord2[2,1] : =-0.707107;

ycoord2[2,1] :=-0.707107;

xcoord2[1,2] :=-0.207107;

ycoord2 [1,2] :=0. 707107;

xcoord2[l, 1] :=-Sqrt [2]+.25;

ycoord2[l, I] :=-.25;

xcoord2[1,1] :=-.9+. 25;

ycoord2 [1,1] :=0.264214;

xcoord2[1,1] :=-.9+.25;

ycoord2 [I ,1] :=fy [xcoord2 [i, 1]] ;

y-(0.707107) = 1 (x - -0.207107)

fy[-.9+.25]

fy[fx_]:= I (fx- -0.207107) + (0.707107)

Clear[normxtemp,normytemp,xcoord2,ycoord2];

column=l;

Do[

Print["Row : ",ct," Column : ",column," = ",pmatrix[[ct,column]]]

,{ct,l,Dimensions[pmatrix][[l]]}]

oper[a_,b_]:=Expand[(nx dx + ny dy)^a (ny dx - nx dy)^b];

oper[a_,b_] :=Expand[(nx Derivative [l ,O] + ny Derivative[O,1])'a (ny

Derivative[l,O]- nx Derivative [O ,l]) "b] ;

/. {Derivative[l,O]Ac:_ ->Derivative[c,O], Derivative[O,1]'d:_

->Derivative [d, O] }

NASA/TM--1999-209182

332

Through [operator [p [x ,y]]] /. {[p[x,y]]->[p][x,y]}

,)

showneighbors[mi_,mj_]:=(

Clear[idx,ldy,ict,jct];

milocal=mi;

mjlocal=mj;

(*

fillposlist=correctfillordering;

Do[

matrixi=fillposlist [[ct]] [[I]] ;

matrixj=fillposlist [[ct]] [[2]] ;

*)

Do[Do[

matrixi=milocal+ictloop;

matrixj=mjlocal+jctloop;

ict= matrixj-im-l;

jct=-matrixi+im+l;

oldphysicalpositionvector={ict*deltax,3ct*deltax};

(* *)

(* Need to unrotate coordinates to get solution here *)

(* *)

newphysicalpositionvector=Rotate2D[oldphysicalpositionvector,N[-theta],{O,O}];

(*

newphysicalpositionvector=Kotate2D[oldphysicalpositionvector,N[theta],{O,O}];

*)

newphysicalicoord=newphysicalpositionvector[[1]];

newphysicaljcoord=newphysicalpositionvector[[2]];

Do[Do[

correctp = -N[(D[Cos[Sqrt[2] Pi physicaltime] Cos[Pi x] Cos[Pi

y],{x,ldx},{y,ldy}] /. {x->newphysicalicoord,y->newphysicaljcoord})];

(*

If[thegrid[[matrixi,matrixj]]!=2,Print["Fill Error"]];

*)

If[Abs[pressuregrid[[matrixi,m_trixj,ldx+1,1dy+l]]-correctp]>.5,

Print["*Pressure[___matrixi,__,___matrixj________dx________dy___]=____ressuregrid[[matrix

i,matrixj,ldx+i,ldy+l]]," correctp =",correctp],

Print[__Pressure[___matrixi____"_matrixj________dx_"_____dy___]=____ressuregrid[[matrixi

,matrixj,ldx+1,1dy+1]]," correctp =",correctp]]

,{idx,O,degree}]

,{idy,O,degree}]

,{ictloop,O,2}]

,{jctloop,O,2}];

);

(* .. *)

(* Perform Gaussian Elimination with pivoting *)

(* From Cormen p. 754 *)

(* *)
lupdecomposition [matrix_] :=

Module [{a,n,pm,p,kp,k ,i, j},

NASA/TM--1999-209182

333

a=matrix ;

n=Dimensions [a] [[13] ;

pm=Table[i,{i, l,n}] ;

Do[

p=O;

Do[

If[Abs[a[[i,k]]]> p, p = Abs[a[[i,k]]]; kp = i];

,{i,k,n}] ;

If [p=O, Print ["Singular Matrix"] ; Break] ;

{pm [[k]], pm [[kp]] }={pm [[kp]],pm [[k]] } ;

Do[

{el [k, i]] ,a[[kp,i]] }={a[[kp,i]] ,a[[k,i]]}

,{i,l,n}];
Do[

a[[i,k]] = a[[i,k]]/a[[k,k]] ;

Do[

a[[i, j]] =a[[i,]]]-(a[[i,k]] a[[k,j]])

,{j,k+1,n}] ;

,{i,k+l,n}] ;

,{k, 1,n-l}] ;

{a, pm}

];

(* *)

(* Provide the solution to the linear system that was divided into an LU-Decom*)

(, ..,)

lupsolve[a_,pm_,b_] :=Module[{n,x,y,i,j},

n=Dimensions [a] [[I]] ;

x=Table[O,{i, l,n}] ;

y=Table[O,{i, l,n}] ;

Do[

y[[iJ]=b[[pm[[i]]]] - Sum[a[[i,j]] y[[j]] , {j,l,i-l}];

,{i, l,n}] ;

DoE

x[[i]]= (y[[i]] - Sum[a[[i,j]] x[[j]] ,{j,i+1,n}])/a[[i,i]]

,{i,n,l,-l}];

X

];

(* This routine replaces LinearSolve since it is more numerically stable *)

(, ..,)

solvesyst em [matrix_, rhsvector_] :=Module [{sings, condit ionnumber, det, a, pm, lhsvect o

r},

sings =S ingularValue s [N [matrix]] [[23] ;

condit ionnumber=Sqrt [Max [sings]/Min [sings]] ;

det=Det [matrix] ;

Print ["Matrix Condition #:",conditionnumber," and determinant :",N[det]] ;

{a, pm}=lupdecompos it ion [matrix] ;

NASAFFM--1999-209182

334

lhsvect or=lupsolve [a, pm, rhsvector] ;

Flatten [lhsvector]

];

(* .)

(* This routine uses low level C to compute the LU solve *)

(* ,)

solvesyst eminc [matrix_, rhsvect or_] :=Module [{sings, conditionnumber, det, a, pm, lhsve
ctor},

Install ["compiledsolvesyst em. exe"] ;

(*

sings=SingularValues IN [matrix]] [[2]] ;

condit ionnumber=Sqrt [Max [sings]/Min [sings]] ;

det=Det IN [matrix]] ;

Print ["Matrix Condition # :", condit ionnumber," and determinant :",N [det]] ;
*)

lhsvect or=compiledsolvesyst em [Flatten IN [matrix]] ,Flair en [N [rhsvector]] ,Dimension

s [matrix] [[i]]] ;

Print ["Done with solve"];

Flatten [lhsvector]

];

(* ,)

(* This uses p. 763 Cormen to solve system in C by getting inverse then *)

(* multiplying in MMA for symbolic RHS *)

solvesyst emincnof c [matrix_, rhsvect or_] :=Module [{sings, condit ionnumber, det, a, pm, 1

hsvect or, lumat rixandpm, lumat fix},

(*

s ings=S ingularValues IN [matrix]] [[2]] ;

conditionnumber=Sqrt [Max [sings]/Min [sings]] ;

det=Det IN [matrix]] ;

Print ["Matrix Condition #:",conditionnumber," and determinant :",N[det]] ;

*)

Install ["compiledinv. exe"] ;

n=Dimensions [matrix] [[I]];

invmatrix=Part it ion [compiledinv [Flatten [N [matrix]] ,n] ,n] ;

lhsvector=invmatrix, rhsvector ;

Flatten [lhsvector]

];

NASA/TM-- 199%209182

Bibliography

[1]

[3]

[43

[q

[61

[7]

Ill]

[12]

[la]

[14]

Abromowitz,M.;St, egan,l.A. Handbook of Mathcma&cal Fu,clio,s Wtth Formula,s. Graph.s.

and :llalh_ marital Tables, U.S. I)ept. o[" Comnwrce. National Bureau of Standards, Applied

Mathemat, ics Series, 55, 1964.

A dams.J .('. :Brainerd,\Y .S. ;M art in .J .T. ;Smit h, B .T. :Wagener,J. K. FOR TRA N 90 Hart d-

book, McGraw-Hill, Inc., New York, 1992.

"'Aeronamics & Space Transportation Technology: Three Pillars for Success." Office of

Aeronautics ,k" Space Transportation Technology. NASA Headquarters Broclmro, 1997.

Agboola. O. "The Influence of Tm'hulence and Blade Geometry on tlw Acoustics of Tm'-

bomachmery." A Ph.D. Thesis, The University of Alabama, 1998.

Anderson,D.A.;Tannehill,J.C.;Plelcher,R.H. Comp_datio,al Fluid 3lrchanics and tt_al

7)'ansfer. McGraw-Hill, New York, 1984.

Anton,tt, El_mel_tary Li**_arAIgebra,5(John Wih_y& Sons. 1987.

AharhaneI,S.: Ditkowski,A.;Yefft.A. BoutM_d Error Nch(m_s for the Wav_ Equallo_ o;;

('omph ,r Domai;;. Tel-Aviv University, ISH A EL, NASA (:ontract No. N AS 1-19480 I(_ASIq,

1995.

Bangalore.A.;Morris.P.J.;Long,L.N. "A Parallel Three-dimensional (!Omlmlational Aeroa-

coustics Method Using Non-Linear Disturhance Equalions", AIAA 96-172_, 1996.

Balchelor,(;.K..4_ lntrodttcllon 1o Fluid D._amics, (:ambridge University Press, 1967.

Berger,M..l.:LeVequ<H.J. "'An Adaptive ('artesian Mesh Algorithm tbr the Euler l';qua-

tions in Arbitrary Geometries" AIAA-8.9-41777, 1989.

Berger,M.J.:Oliger,J. "Adaplive Mesh Refinement for tlyperbolic Parlial Differential

Equations." .1. ('omp. Phqmc.s. Vol..r)?,. Pl'. ,t84-512. 1984.

I_erger,M.J.:I_eVeque,R.L. "'Stable Boundary (!ondilions For ('arlesian (;rid Calculations."

('ompult_g ,h't/s& m._ i_ £';;gim_ri_g, Vol. 1, Nos. 2-4, pp. "{05-11, 1990.

Bojanov,B.D.;ltakopian,H.A.:Sahakian,A.A. ,h'pllne Functzons and Multi_,ariat(l;_t(rpola-

lie,s, l(hnvor Academic Publish_'rs. 1993.

[_rualdi,t_.A. Iulrvdttclor.q ('ombi,alorics North-Holland. 1992.

Burden,I'{.L.;Faires,J.D. X,m(vital .4;lal_lsi.s: kbarlh f".dltio, In, VS-Kmll Puhlishing ('ore-

party, 1989.

[16] (:engel.Y.A.;Boh's,M.A. Th_ rmodq;mmics: .4,_ gngi,_etri_Ltl Approach, ?,,lc(,raw-tlill, N_-w

York, 1989.

NASA/TM-- 199%209182 335

336

[17]Coirier,W.J."'An Adaptively-Refined,(!arlesian,(:eli-BasedSchemefor theEulerand
Navier-StokesEqualions."NASATM 106754,1994.

[18]Collatz,L. Tb_ Numerical Tr_atme_t of D(ffer_ntial Eq,mtions, Springer-Verlag, 1960.

[19] (:olonius,T.;Lele,S.K.;Moin,P. "'Sound Generat.ion in a Mixing Layer", J. Fluld Mech.

Vol.330, pp.375-409, 1997.

[20] (k_rmen,T.H.;Leiserson.C.E.:Rivest,R.L. Introduction to Algorithms. McGraw-Hill Book

('ompany, 1992.

[21] ('ox,D.;Little,,I.;O'Shea,D. Ideals. tarictics, and Algorithms. Springer-\:erlag, 1992.

[22] ('righlon,D.G. "Basic Principles of Aerodynamic Noise Generation." Pro 9. Aerospace Set..

Vol. 1(5, No. 1, pp. 3t-96, 1975.

[23] ('ullen.C.(;. Li_ar AIg(bra (,_d D{ff:renlial Equations, PWS-Kenl Pul)lishing, 1991.

[:24] Davis,A.D. ('lassical Mechamc..s, Academic Press, 1986.

[25] Ditkowski,A. "Bounded-Error Finite Difference Schemes for Initial Boundary Value t)rot, -

Ictus on ('omplex Domains," Ph.I). Thesis, Tel-Aviv University. 1997.

[26] Farin.(;. ('#rr_,s a_d ,s'olf(tc_s for ('omp_tt_r Aided G(ometri(- D_.siyl_:A pracltcal

9uid¢,:\cademic Press. 1993.

[27] Forrer. H. "Second Order Accurate Boundary Treatment for (?artesian Grid Melhods.'"

Resoarch Heporl No. 96-13, Seminar flit' Angewandle Matlwnmtik. Eidgenossische Tech-

nische l-|ochschuh', ('H-8092 Zurich, Switzerland. 199{i.

[:2S] Fulks.W. Adva_c_d ('alculu.s: a, itdroduction 1o amdysis, John Wiley & Sons, 1978.

[:29] (_anzha,V.(;. ,Vum _ rical ,S'ohtlio,s for Partial D_ff_ r_ nlial Equalions: Probl: m ,s'oh,mq l:s-

lt_9 Math_matica, ('R(' Press, New York, 1996.

[30] (;arabedian,P.1]. Partial Dtff_ r¢,ttal Equations, Chelsea Pt,blishing ('ompany, Now York,

N.Y., 1986.

[31] (;erahl.('.F.;Wheatley, P.O. Applied Numerical A,alqsi._. Addison-Wesley Publishing ('om-

pany, 1994.

[32] (,odfrey,A.(_.: Milchell,C.R. and Wahers,ll.W. "'Practical aspects of spalially high accu-

ralo melllOdS". AIAA-.g2-0054. 1992.

[33] (;oodrich. J.W. "'Application of a New High Order Finite Difl'erence Scheme to Acoustic

Propagalion With lhe Linearized Euler l_quation." NASA TM 10647),1, 1993.

[34] (,oodrich, .I.W. "'An Approach to the Development of Numerical Algorithms for Firs!

Order Linear Hyperbolic Svsl.ellls ill Mult, iple Space Dimensions:The (!OllSlalll. (k)efficien!

('ase." NASA TM 106928, 1.t).q,5.

[aq (;oodrich..I.W. "'Accurate Finile Difference Algorithms." NASA 'I'M 107377, 1996.

[36] (;oodrich.J.W.:l-lagslrom.T. "Accurat,e Algorithms and Radiation Boundary (:ondilions

for Linearizcd Euler Equations." AIAA 96-1660, 1996.

[37] (;oodrich,.l.\V. "High Accuracy Finito Difference Algorithms for ('omlmtatioual Aeroa-

coustics.'" AIAA 97-1584. 1997.

NASA/TM--1999-209182

337

[3s]

[39]

[40]

[41]

[4'_1

[44]

[45]

[4 i]

[:,-l]

7,"]

Goodrich,J.W.:Hagstrom,T. "'A Comtmrison of Two Accurate Boundary Treatments for

Computational Aeroacoustics." AIAA ,(t7-I 585, 1997.

Goodrich,J.W.:Dyson,lR,W. "Automated Development of Accurate Algorithms and Effi-

eiem (:odes for Conq)utational Aeroacoustics." Computational Aerosiences Conference.

NASA Ames, 1998.

(_oodrich,J.W.:Itardin,J. "Accurate Finite Difference Algorithms for Comtmtat, ional

Aeroacoustics", CFD Review 9fi, John Wiley, 1996.

Gottlieb,D.;Turkel.E. "Dissipative Two-Four Methods for Time-Dependent Problems."

Malhemattcs of ('omputation, Vo} 30, Number 136. 1976.

Hagstrom,]'. "On high-order radiation boundary conditions" I31.4 lolume to Computa-

lional i|'av(Prolmgation, 1,()96.

ttagstrom.T. "On the convergence of local al)l_roximations to pseudodifferential operators

with apl_lications, Proceedings of the Third International (_onference on Ma.thenmtical

and Numerical Aspects of Waw _ Propagation Phenomena, E. Becache, G, (_ohen, P. ,loly

and J. Roberts, eds.'" h'L4M , pp. 474, l,qg,r).

ltagstrom,T. "'Much Ado About Nothing- Radiation Boundary ('ondilions at Artificial

Boundaries for Colnl)utational Aeroacoust.ics", I('OMP New,s, Vol. 3, No.2, 1.()97.

Ilagstrom,T. Private (:onmmnication, 19.()8.

Halliday,D.:Resnick,R. Fundam(ntal._ of Ph!lsics. John Wiley L" Sons. 1986.

Hamming,RAY. Xumericol 31elhod.s for ,s'(ic_tist._ a_d Engim_rs .Mc(h'aw-ltill, 1!)73.

Hardin.J.(!. "'hltrodu('t, ion to (_Olnlmtational Aeroacoustics", Computalwnal Fluid Dy-

,ami(._ R(vU u'. 1.().()6.

Harl,.l.F. ('omlml(r ApproJ'imation,s. John Wiley & Sons,lnc.,New York, 196_

llarten,A.;Engquisl ,B.:Osher,S.:(_hakravarl.hy,S.t{. "' Uniformly Higher Order Accurate Es-

sentially Non-oscillatory Schemes. 11I." Jour, al of ('ompulatto,al Pb_lsic.s, Vol 71, No.2.

1987.

|{elzeI'.(_. "'(;rSebner Bases'" Tkt Malh_malica Journal, Vol. 5 Issue 1, 1.q95.

llixon,H.:Slfih.S.H.:Mankbadi,R.R. "" Evaluation of Boundary (!om:litions for (!ompu_a-

t iona] Aeroacotlstics'" ,4 L4.4 Journal , 33, "2006-2012, 1995.

llixoll,R. "'Evaluation of a Itigh-Accuracy Mac(:ormack-Tyl)e Scheme Using I_enchmark

Probh'ms.'" :V.,t,%I ('R 202:12,f, I('0MP-97-0:3, 1997.

tlodgman,('. I), :\Veast, R .('.; Wallace,(!. W. :Sol by,S M. :otis. Ha, dbook of ('h(m isl r9 a n d

Phymcs Chemical Rubber Publishing (Io., 1954.

Itu.F.Q. "'()n Al_sorbing Boundary Conditions for Linearized Euler Equations by a Per-

f_'ct.ly .Matched Layer" , J. ('omp. Pb._l.s., 129, pp.201-219, l.().q6.

ltu.F.Q.:llussaini,M.Y.:Mathe_',J.L. "'Low Dissipation all',[Low Dispersion Rmlge-Kutta

Schemes for (%mlmlational Aeroa('oustics.'" J. ('Omlml. f)h_],s.. 124, p. 177. l,(),q6.

[57] Iltdf, I).L. " Fan Noise lh'edict.ion: Status and Needs." .4L,t.4-9,_,-a177 , 1,().()_.

NASA/TM--1999-209182

338

[60]

[61]

Janna,W.S. Introduction to Fluid Mechanics, PWS-Kent Publishing Company, 1987.

Johansen,It. ,4 ('artesian (/rid Embedded Bou_Mary Method for Poisson's Equation on
Irregular Domains, 1997.

Knuth,D.E. The T_Xbook. American Mathematical Society and Addison-Wesley Publish-
ing Company, 1986.

Koepf, W. "'Efficient Coml)utation of (_hebyshev Polynomials in Computer Algebra."
Konrad-Zuse-Zentrum fur lnformationstechnik Berlin (ZIB), Takuslr. 7, 1)-14195,

koepf, a'zib.de

[62] Kreiss,H.O.: Lorenz,J. Initial-Boundary |alu(Probl_m._ and the Navi_r-5'lokes Equations.
Academic Press, 1989.

[64]

[65]

[6s]

[69]

Kreiss,H .O.: Oliger, J. "'Colnparison of Accurate Methods for the Integral,|oil of ltyperbolic
Equations," 7illus, vol. 24. pp. 199, 1972.

Krishnanmrthy,E.V. Er_vr-fr_¢ Polyl_omial Matrix ('ompulalions, Springer-Verlag. 1.9_;5.

Kurbatskii,K.A.:Tam,C.K.W. "(:artesian Boundary Treatment of Curved Walls for ltigh-
Order Compu|ational Aeroacoustics Schenles.'" AIAA Journal, Vol. ::15, 13:/-140, l.q.q7.

Kwon.K.ll.:lAtllejohn,L.L. (7ass|ileal|on of classical orthogonal poly_omials 1993 preprin!

s,_ries No. 27, http://www.garc.snu.ac.kr/print/pre93/l_re9397,hln_l

Lamport,L..4 Document t'rHmratioJ_ ,_,'gstem: L_7}j.\': l'ser's Gutd_ (:: Ref(r(nc(Manual

Addison-Wesley Puldishing (:ompany, 19_6.

Lax,P.l).;Weudroff, B. "'Syslems of (:onservation Laws." Comm. Put'(.'ll_pl. Math, 13,
pp,217, 1960.

Lele.S.K. "('ompact Finite Diff_rence Schemes with Spectral-like Resolution." Journal of
('omputatioaal Physics. Vol. 130, 1,q92.

[70] Lele,S.K. ('ompulattoual A:roacoustics: A Review. 35th Aerospace Sciences Meeting ,k
Exhibit, 19,q7.

[71]

[72]

[;:q

It4|

[75]

Leighton, F.T. I_llvduclio_ to Parall(I Algortth ms al_d ,4 rch il¢ cl u r¢'s: ,4 trays. 7)'re.s. Hy-
p¢ rcub_ s, Morgan Kaufinann, 1.q.q2.

Lichthlau.l). The Mathemahca Journal, Wolfram Researh, volume 7, issue 1. p.26, 1.q97.

Lorentz.R.A. Multivariat_ Birkhoff lnlt_polatiom Springer-k:erlag, 19.92.

Mac('orlnack,l{.W. L_clure Notes in Physic.s, Vol. _, Springer-\:erlag, New York/Berlin,
pp. 151. 1971.

Mac('ornlack,R.W. Numerical ,_,'ohttion of the Interaction of a ,';hock War(with a Laminar

Bouudarg Lag(r, Proc. 2nd Internal, ('onf. on Numerical Methods in Fluid Dynamics, Lec.
Noles in Phys., M. Holt, Editor, Springer-Verlag, New York. 1974.

[76] Mayl'.E.: Meyer.A. "'The complexily oflhe word prot)lem for commtttalivesemigroups and
polynomial ideals." Adr. Math. 46, ::_05-329, 1982.

[77] M,qton,,l.I'/.:Berg,'r,M.J.:Aflosmis.M..I.:Wol_g,M.l)." I)('velolmwn_ and AI)l)lication of a 3I)

('artesian (;rid Euler Melllod.'" N..t,'4=| ('P 4291, pl).225-249. 1,().(15.

NASA/TM--1999-209182

339

[78]Melton,J.E.;Berger,M.J.;Afl,osnlis,M.J.;Wong,M.D."3D Applicationsof a(_artesianGrid
EulerMethod."AIAA-95-0853, 1995.

[79] Melt, on,J.E.;Enomoto,F.Y. "3D Automatic (_artesian Grid Generation for Euler Flows."
A IA A- 93-S.'186- UP, 1993.

[80] M. Metcalf. k_ffeclive FORTRAN 77 Oxford Science Publications, 1985.

[81] Mitchell,B.g.:Lele,S.K.;Moin,P. Direct Computatim, of the Sound Generated by Suh,_onic

aud Supersonic Axisymmetric Jets, Report No. TF-66, Thermosciences Division, Depart-

ment of Mechanical Engineering, Stanford University, 1995.

[82] Morris,P.J.;Long,L.N.;Bangalore,A.:(_hyczewski,'I'.: Lockard,D.;Ozyoruk,Y. Expt ric _c_ s

i1_ the Practical Application of Computatto_al A_roacoustics, Fluids Engineering Division
Conference, Volume 3, A,qME, 1996.

[83] Morse, P. M. :Ingard, K.U. 7'h _or_tical A caustics, Mc(; raw-Hill Book (!ompany. 1.(t68.

[84] Nilsson..l.W. Electric Circuits. Addison-Wesley, 1990.

[85] O'NeiI,P.V. Advanced E,gin(_ ril_g Mathematics. Wadsworth Publishillg ('ompany, 1991.

[86] Ozyoruk,Y. "Seined i_a(liatioz) From Dueled Fans Using Coml>utat, ional Aeroacoustics on

Parallel ('omputers", Ph.l). Thesis, Pem_sylvania State llniveristy, 1995.

[87] Ozyoruk,Y.;Long,L.N. " A New Eificient Algorithm for Computational Aeroaconstics on

Parallel Processors "', .loor_ml of Comlmtotional Phqsics, Vol. 125, pp. 135-149. 1996.

[8_] Pierce.A.D. Aco¢lslics: .l_ i_Hrodttciion to its physical principlc,s and applicatiolt,s.

Mc(_raw-|lill |look (!Oral)any, 1.()_1.

[89] Powell, M..1.D., Approximation theory a,d method,s, (!anti)ridge Vniversity Press. 1981.

[.q(J] Priestley,A. Ro_ "._,'¢chcm_.s. Eul_ r Equatiol_._. ('art_ siaT_ Gr_ds. .Vo_-('art_.sial_ (;_ om_tri_.s.

Rigid Walls a_d all that Numerical Analysis Report 11/87, 1!)87.

|ill] Quirk,J..]. "'An Alternative to [:nst, ructured (;rids for Computing (;as Dynamics Flows

Around Arbitrarily ('omplex Two-I)imensional Bodies" ICA,s'E R_port :re. 92-7.. 1.q92.

[92] l_angwa]la,A.A.;Hai,M.M. "A Muhizone tligh-Order Finite-l)ifferenc," Method for tl,'

Navier-Stokes Equations." .41AA-95-1?flS-CP. 1995.

[93] H umsey,('.L, '"(|amputation of Acoustic \Vaves Through Sliding Zone lnterfaces !is|rig an
Euler/N avier-Stokes ('ode." A IAA-95-1752. 19.%.

[94] Saff.t;.B.;Snider,A.D. Fm_damf_tals of ('ompl(a" Aualysis foc Math(malic._. sci_(a_d

gi(ri_g. Prentice-Hall, Englewood (!lifts, N..I., 1997,.

[95] Sedgewick,l_. Algorithm.s, Addison-Wesley, 198_.

[9(i] Sk,_drzyk,E. I'h_ f'otmdatto_s of Acoustic._, Springer-Verlag, New York. l!ffl.

[97] Smith.(;. I). Numc rieal ,S'ohttio_ of Partial D_[f(re ntial Equation,< l"i_il(1)_/]) r, u cr 31(lh-
od._, ('larendon Press. 1985.

[98] Smith,M.J. Aircraft No_se, (:ambridge University Press, 1989.

[9,(t] Stewart.(;.W. l_h'oductton to 3/atri:r ('ompulaliot_s, Academic Press, 1.973.

NASA/TM-- 1999-209182

340

[100]

[101]

[1o2]

[to3]

[lo4]

[1o:,]

[lO6]

[lot]

[os]

[ll0J

[111]

[112]

[ll:t]

Ill4]

[llr]

IllS]

Strikwerda,J.C. Finite Differenc_ Schemes and Partial D(ffcrenltal Equations. Wadsworth

& Brooks/Cole Advanced Books & Software, 1989.

Swokowski,E.W. Calculus with Analgtic Gcometry. PWS-KENT Publishing (!ompany,
1988.

Szego,G. "Orthogonal Polynomials." American Mathematical Society Colloquium Pubhca-
lions ['olume XXIII, 1959.

Takewaki,H.:Nishiguchi,A.;Yabe,T."('ubic Interpolated Pseudo-particle Method (CIP)for

Solving Hyperbolic-Type Equations." Journal of Computational Physics, Vot. 61, pp. 261-
268, 1985.

Takewaki,H.:Yabe,T. "The Cul)ic-lnterl)olated Pseudo Particle ((zIP) Method: Applica-

lion to Nonlinear and Multi-dinlensional Hyperbolic Equations." Journal of Computatio,al
Physics, Vol. 70, pp. 355-372, 1.qS7.

Tam,C.K.V¢.:WeI>b.J.(?. "Dispersion-Relation-l)reservit_g Finite Ditference Schemes for

(:Omlmtational Acoustics." Journal of Computational Physics, Vol. 107, 1993.

Tam,C.K.W.:Dong,Z. "Wall Boundary (:onditions for High-Order Finile-Difference

Schemes in Coml)utational Aeroacouslics.'" Theorct, ('omput. Fluid Dynamics, 6, 1)p. 303-
322, 1994.

Tam,C.K.W. "'('omputation Aeroacoustics: Issues and Methods." AIAA Journal, Vol. 33,
No. I0, 1995.

Tam,('.K.W. "Advances in Numerical Boundary Condfiions for Comlmlational Aeroa-
coustics.'" .4 IA A-97- 1774, 1997.

Tam,C.K.W.:Konstantin,A,:Kurbatskii,A.:Fang,J. "Numerical Boundary (:ouditions for

(!olnptltat ional Aeroacoustics Benchmark Problems", A'.4,%1 ('P .4.752, l)l). 19 I-2 I.% 1997.

Taylor,A.E. ,4dcanc(d (!ahulu._, (;inn and Company, 1955.

Thompson,.l.F..Yum(rical Grid (;_n_raliom Elsevier Science Publishing Coml)auy, Inc.,
1982.

Trefet hen,L. N. '"(4roul) \'elocity In Finite Difference Schemes.'" ,b'/A M h'(vie w, Vo1.24, No.
2, 1982,

'['rim,D.\V. Applied Partial D_ff_)'<nlial Equations, PWS-I((,nt Publishing (!ompany, 1990.

l'mJ. l: 7"b(Quick R<fir<nc_ (;tlidt . Order Number 31154,1-002.NKR (!onlputer Semi-
,mrs. hltel Scientitic Conlput(_rs, 198!1.

Varga, R. :llatria" lie ralive .4 nal qsr_, Pr(mt ice- Hall, Englewood (!lifts, N.J.. 1962.

Vemuri,V.:l(arphls,W.J. Digital ('ompul_r 7}'ealm_)d of Partial Dff.l?l,_dial Equations

Prentice-Hall Series in (!omputational Mathematics, 1981.

Viswa nat hart, K. :San kar. L. N. ""Toward) he Direc((lalculation of Noise: FluidAcouslic (!ou-

pied Approach." AIAA ,lour)lal, Vol. 33, No.12. I)1) 2271-227.q, 1995.

Viswanalhan.l(.:Sankar,L.N..i (:Oml)araDr_ ,S'lud.q of l:l)U'tnd a_ld Mac('ormack ,%h_m(,s
for ('.4A B_ nchmark Probh ms. I('ASE/Lal{(' Workshop on B('nchmark I'rol>le))ls in (:om-

i)utationa[Aeroacoustics. NASA (!!) 33()0, llanq>(,on . Va.. p. 18.3-1!)5, 19.(-)5.

NASA/TM-- 1999-209182

REPORT DOCUMENTATION PAGE FormApprovecl
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding Ibis burden estimate or any other aspecl o| this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davs H ghway, Sute 1204, Arlington, VA 22202-4302, and to the Off ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1999 Technical Memorandum

5. FUNDING NUI_IBERS4. TITLE AND SUBTITLE

An Automated Code Generator for Three-Dimensional Acoustic Wave

Propagation With Geometrically Complex Solid Wall Boundaries

6. AUTHOR(S)

Rodger William Dyson, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

WU-538-03-11-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-11691

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-- 1999-209182

This report was submitted as a dissertation in partial fulfillment of the requirements for the degree Doctor of Philosophy to

Case Western Reserve University, Cleveland, Ohio, May 1999. Responsible person, Rodger William Dyson, Jr., organiza-

tion code 5940, (216) 433-9083.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 64, 71,61, and 45 Distribution: Nonstandard

12b. DISTRIBUTION CODE

This publication is available from the NASA Center for AeroSpace Information. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

Finding the sources of noise generation in a turbofan propulsion system requires a computational tool that has sufficient fidelity to simulate steep

gradients in the flow field and sufficient efficiency to run on today's computer systems. The goal of this dissertation ",,,'as to develop an autonmled code

generator/br the creation of sot'_ware that numerically soh'es the linearized Euler equations on Cartesian grids in three dimensional spatial domains

containing bodies with complex shapes. It is based upon the recently developed Modified Expansion Solution Approximation (MESA) series of explicit

finite-difference schemes that provide spectral-like resolution with extraordinary efficiency. The accuracy of these methods can. in theory, bc arbitrarily

high in both space and time, without the significant inefficiencies of Runge-Kutta based schemes, The complexity of coding these schemes was.

however, very high, resulting in code that could not compile or took so long to write in FORTRAN that they were rendered impractical. Therefore. a tool

in Mathematica was developed that could automatically code the MESA schemes into FORTRAN and the MESA schemes themselves were reformulated

into a ','cry. simple form-making them practical to use without automation or very powerful with it. A method tot automatically creating Ihe MESA

propagation schemes and their FORTRAN code in two and three spatial dimensions is shown with up to 29th order accuracy in space and time. Also. a

method |or treating solid wall boundaries in two dimensions is shown with up to I hh order accuracy on grid aligned boundaries and with up to 2nd

order accuracy on generalized boundaries. Finally, an automated method for parallelizing these approaches on large scale parallel computers with near

perfect scalabilily is presented. All these methods arc combined to tbrm a turnkey code generation tool in Malhemalica that once provided the CAD

geometry file can automatically simulate the acoustical physics by replacing the traditionally labor intensive tasks of grid generation, algorithm

development. FORTRAN coding, and ',,,,all bc, undary trcannents with automated algorithmic procedures

14. SUBJECT TERMS

Cartesian grid: Finite difference: Computational aeroacoustics: Parallel computing;

Complex geometry; High order accuracy

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGEs

356

16. PRICE CODE

AI6
19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Unclassi fled

Standard Form 298 (Rev, 2-89)

Prescribed by ANSI Std Z39-18
298-1 02

341

[llg]

[120]

[121]

[12a]

[1:24]

[1:2r]

Wagner,D.B. Power Programming with Mathcmalica McGraw-Hill, New York, 1996.

Winston,P.H. Artificial InlHligence, Addison-Wesley. 1984.

Wolfram.S. Mathematica: ,4 System for Dotng MalhcmatZcs by Computer, Addison-Wesley

Publishing Company, 1991.

Wolfram.S. The Malhcmalica Book. 3rd cd. Wolfram Media/(Tamhridge Uniw_rsity Press,
1996.

Wolfram Research Mathematica 3.0 : Standard Add-On Packages Cambridge University
Press, 1996.

Yabe,T. "A Universal Cubic Interpolation Solver for ('ompressible and Incompressible
Fluids." ,%ock Wa c_s Vol. 1, pp. 187-195. 1!191.

Youug,D. M. ;(;regory,R.T. A S_ r_,_y of Nu m e firm Malh{ matics, Dover Publications. I _._88.

Zachmatloglou,E.(!.;Thoe,D.W. I_l_vd,clion to Partial DilJ'(r_l_tial Equalw_s with Appli-
cations. Dover Publications, New York, 1986.

Zauderer,E. Partial D(ffcrential Equation.s of Apldi(d Mathematics. John Wiley ,k" Sons.
1,(}8(.).

NASA/TM-- 1999-209182

